研究生: |
蔣昭歡 Jiang, Zhao-Huan |
---|---|
論文名稱: |
分子印跡技術合成人工麝香及香豆素吸附劑及其基於磁性修飾的樣品前處理應用 Synthesis of Musk-T and Coumarin Absorbents by Molecular Imprinting Technique and Its Application on Sample Pretreatment Based on Magnetic Modification |
指導教授: |
凌永健
Ling, Yong-Chien |
口試委員: |
凌永健
Yong-Chien Ling 黃賢達 Shang-Da Huang 吳家誠 Gaston J. Wu 曾新華 Hsin-Hua Tseng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 分子印跡高分子 、合成麝香 、香豆素 、吸附劑 、綠色 |
外文關鍵詞: | molecularly imprinted polymer, synthesis musk, coumarin, adsorbent, green |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
合成香料在生活中廣泛被使用,但由於其性質穩定,不易降解,隨生活污水進入生物圈後不僅破壞環境,也危害人類健康。本研究選取麝香中的Musk-T(ethylene glycol brassylate)和香豆素作為基本研究對象合成以分子印跡技術(Molecularly Imprinted Technique, MIT)為基礎的吸附劑,並對其進行磁性修飾,應用於分析化學中的關鍵前處理過程,對複雜基質中待測物做初步分離。
本研究分別以合成麝香Musk-T和香豆素為模板分子,MAA作為與其產生非共價作用結合位點之功能單體, EGDMA作為交聯劑,AIBN作為起始劑,在有機溶劑中沉澱聚合製備分子印跡高分子微球MIPs( Molecularly Imprinted Polymers)。其中以Musk-T為模板製備的MIPs平均粒徑主要集中在400-500 nm之間,粒徑分佈集中,在研究濃度範圍0.05-1 mmol/L中,吸附劑吸附容量可達13.80 mg/g,最低1.88 mg/g,印跡因數最高4.1,最低2.4,且選擇性良好。以香豆素為模板製備的MIPs平均粒徑主要集中在300-400 nm之間,粒徑分佈集中,在研究濃度範圍0.02-0.5 mmol/L中,吸附劑吸附容量可達2.89 mg/g,最低0.39 mg/g,印跡因數最高10.1,最低2.7,且選擇性良好。經過Scatchard模型分析發現所合成兩種吸附劑均存在特異性結合和非特異性結合兩種結合位點。再利用EDC/NHS系統將帶有氨基的磁性奈米粒子修飾與帶有羧基的MIPs表面得到具磁性MIPs微球,方便用作人工香料吸附劑。本研究製備之MIPs吸附劑,相較於傳統吸附劑,具有高選擇性、易於合成、耐用、易回收等特點,有助於落實綠色分析化學之目標。
Artificial fragrances widely used in cosmetics, perfumes, detergents and other daily necessities are good alternatives to expensive natural flavors. Consequently, domestic sewage containing significant amount of artificial fragrances is discharged into the aquatic environment. Artificial fragrances are usually non-biodegradable, and results in bioaccumulation, disturbing the biological chain. Musk is very popular since ancient times. Deer musk is expensive and rare, therefore synthetic musk has gained more popularity. Musk-T, one of the synthetic musk, is used in my research. Another chemical is coumarin, which is also widely used as a fragrance in our daily life. But it is reported by the Health and Consumers Department of the European Union that coumarin is an allergen.
In my research, MIPs for Musk-T and coumarin are successfully prepared, where MAA is used as the functional monomer, EGDMA as the cross-linker, and the polymerization reaction is initiated by AIBN. The average size of MIPs for Musk-T is 400-500 nm, and for the concentration of 0.05mM-1mM, the adsorption capacity is in between 1.88mg/g and 13.80mg/g. The highest imprinting factor is 4.1, and the lowest is 2.4. The size of MIPs for coumarin is 300-400 nm, the adsorption capacity is between 0.39-2.89 mg/g during the sample concentration of 0.02-0.5 mM. The imprinting factor is between 2.7 and 10.1, and has a good selectivity. The data is also analyzed by Scatchard Equation. Results show that there are two kinds of adsorption on the surface of both MIPs, specific binding and nonspecific binding.
At last, the MIPs is modified by Fe3O4 using the EDC/NHS system, which makes the MIPs more convenient when it is used in the pretreatment process.
1. Peters, R. J., Phthalates and artificial musks in perfumes. TNO Environment 2005.
2. Shek, W. M.; Murphy, M. B.; Lam, J. C. W.; Lam, P. K. S., Synthetic polycyclic musks in Hong Kong sewage sludge. Chemosphere 2008, 71 (7), 1241-1250.
3. Nakata, H.; Sasaki, H.; Takemura, A.; Yoshioka, M.; Tanabe, S.; Kannan, K., Bioaccumulation, Temporal Trend, and Geographical Distribution of Synthetic Musks in the Marine Environment. Environmental Science & Technology 2007, 41 (7), 2216-2222.
4. Wan, Y.; Wei, Q.; Hu, J.; Jin, X.; Zhang, Z.; Zhen, H.; Liu, J., Levels, tissue distribution, and age-related accumulation of synthetic musk fragrances in Chinese sturgeon (Acipenser sinensis): Comparison to organochlorines. Environmental science & technology 2007, 41 (2), 424-430.
5. 胡正君; 史亚利; 蔡亚岐, 气相色谱-质谱法测定人体血液样品中合成麝香. 2010.
6. 梁高锋; 王珺; 周静; 张晓岚; 盛国英; 傅家谟, 气相色谱-质谱联用测定母乳中合成麝香. 环境化学 2010, 29 (1), 113-116.
7. Zouhar, L.; Vavrova, M.; Mravcova, L.; Kubickova, K.; Vecerek, V., EVALUATION OF WASTEWATER CONTAMINATION BY MUSK COMPOUNDS. Fresenius Environmental Bulletin 2012, 21 (11).
8. Bester, K., Analysis of musk fragrances in environmental samples. Journal of Chromatography A 2009, 1216 (3), 470-480.
9. OSPAR Comission. OSPAR Background Document on Musk Xylene and Other Musks. ISBN 1-904426-36-0 (2004).
10. 李攻科; 胡玉玲; 阮贵华, 样品前处理仪器与装置. 化学工业出版社: 2007.
11. 胡小刚; 李攻科, 分子印迹技术在样品前处理中的应用. 分析化学 2006, 7.
12. Vlatakis, G.; Andersson, L. I.; Müller, R.; Mosbach, K., Drug assay using antibody mimics made by molecular imprinting. Nature 1993,361, 645 - 647.
13. Mosbach, K.; Haupt, K., Some new developments and challenges in non‐covalent molecular imprinting technology. Journal of Molecular Recognition 1998, 11 (1‐6), 62-68.
14. Further information on the Society for Molecular imprinting may be found at http://www.ng.hik.se/SMI.
15. (a) Shi, H.; Tsai, W. B.; Garrison, M. D.; Ferrari, S.; Ratner, B. D., Template-imprinted nanostructured surfaces for protein recognition. Nature 1999, 398 (6728), 593-7; (b) Dickert, F. L.; Hayden, O., Imprinting with sensor development – On the way to synthetic antibodies. Fresenius J Anal Chem 1999, 364 (6), 506-511.
16. Sellergren, B., Direct drug determination by selective sample enrichment on an imprinted polymer. Analytical Chemistry 1994, 66 (9), 1578-1582.
17. Cormack, P. A.; Mosbach, K., Molecular imprinting: recent developments and the road ahead. Reactive and Functional Polymers 1999, 41 (1), 115-124.
18. Mullett, W. M.; Dirie, M. F.; Lai, E. P. C.; Guo, H.; He, X., A 2-aminopyridine molecularly imprinted polymer surrogate micro-column for selective solid phase extraction and determination of 4-aminopyridine. Analytica Chimica Acta 2000, 414 (1–2), 123-131.
19. Mullett, W. M.; Martin, P.; Pawliszyn, J., In-tube molecularly imprinted polymer solid-phase microextraction for the selective determination of propranolol. Analytical Chemistry 2001, 73 (11), 2383-2389.
20. Koster, E. H.; Crescenzi, C.; den Hoedt, W.; Ensing, K.; de Jong, G. J., Fibers coated with molecularly imprinted polymers for solid-phase microextraction. Analytical Chemistry 2001, 73 (13), 3140-3145.
21. (a) Hu, X.; Hu, Y.; Li, G., Preparation and Characterization of Prometryn Molecularly Imprinted Solid‐Phase Microextraction Fibers. Analytical Letters 2007, 40 (4), 645-660; (b) Hu, X.; Pan, J.; Hu, Y.; Huo, Y.; Li, G., Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples. Journal of Chromatography A 2008, 1188 (2), 97-107; (c) Hu, X.; Hu, Y.; Li, G., Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography. Journal of Chromatography A 2007, 1147 (1), 1-9.
22. Piletsky, S.; Dubey, I. Y.; Fedoryak, D.; Kukhar, V., Substrate-selective polymeric membranes. Selective transfer of nucleic acids components. Biopolymers and Cell 1990, 6 (5), 55-58.
23. Wang, H. Y.; Kobayashi, T.; Fujii, N., Molecular imprint membranes prepared by the phase inversion precipitation technique. Langmuir 1996, 12 (20), 4850-4856.
24. (a) Mathew-Krotz, J.; Shea, K., Imprinted polymer membranes for the selective transport of targeted neutral molecules. Journal of the American Chemical Society 1996, 118 (34), 8154-8155; (b) Sergeyeva, T. A.; Matuschewski, H.; Piletsky, S. A.; Bendig, J.; Schedler, U.; Ulbricht, M., Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization. Journal of Chromatography A 2001, 907 (1), 89-99; (c) Suedee, R.; Srichana, T.; Chuchome, T.; Kongmark, U., Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water. Journal of Chromatography B 2004, 811 (2), 191-200.
25. Haupt, K.; Dzgoev, A.; Mosbach, K., Assay system for the herbicide 2, 4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element. Analytical Chemistry 1998, 70 (3), 628-631.
26. Ansell, R. J.; Mosbach, K., Magnetic molecularly imprinted polymer beads for drug radioligand binding assay. Analyst 1998, 123 (7), 1611-1616.
27. Pang, X.; Cheng, G.; Lu, S.; Tang, E., Synthesis of polyacrylamide gel beads with electrostatic functional groups for the molecular imprinting of bovine serum albumin. Analytical and Bioanalytical Chemistry 2006, 384 (1), 225-230.
28. (a) Huang, J. T.; Zhang, J.; Zhang, J. Q.; Zheng, S. H., Template imprinting amphoteric polymer for the recognition of proteins. Journal of Applied Polymer Science 2005, 95 (2), 358-361; (b) Spégel, P.; Schweitz, L.; Nilsson, S., Selectivity toward multiple predetermined targets in nanoparticle capillary electrochromatography. Analytical Chemistry 2003, 75 (23), 6608-6613; (c) Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O'Mahony, J.; Whitcombe, M. J., Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. Journal of Molecular Recognition 2006, 19 (2), 106-180.
29. http://www.utc.fr/~wmpi/.
30. Pichon, V.; Chapuis-Hugon, F., Role of molecularly imprinted polymers for selective determination of environmental pollutants—a review. Analytica Chimica Acta 2008, 622 (1), 48-61.
31. Lv, Y.-Q.; Lin, Z.; Feng, W.; Tan, T., Evaluation of the polymerization and recognition mechanism for phenol imprinting SPE. Chromatographia 2007, 66 (5-6), 339-347.
32. He, R.; You, X.; Shao, J.; Gao, F.; Pan, B.; Cui, D., Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation. Nanotechnology 2007, 18 (31), 315601.
33. McCluskey, A.; Holdsworth, C. I.; Bowyer, M. C., Molecularly imprinted polymers (MIPs): sensing, an explosive new opportunity? Organic & Biomolecular Chemistry 2007, 5 (20), 3233-3244.
34. 侯能邦; 刘院林; 汪国松; 朱秀芳; 丁中涛; 曹秋娥, 香豆素分子模板聚合物的合成与性能研究. 化学学报 2006, 64 (16), 1705-1710.
35. Wang, R.; Bardelang, D.; Waite, M.; Udachin, K. A.; Leek, D. M.; Yu, K.; Ratcliffe, C. I.; Ripmeester, J. A., Inclusion complexes of coumarin in cucurbiturils. Organic & Biomolecular Chemistry 2009, 7 (11), 2435-2439.
36. McGinty, D.; Letizia, C.; Api, A., Fragrance material review on ethylene brassylate. Food and Chemical Toxicology 2011, 49, S174-S182.
37. 戎非; 李萍; 袁春伟, 沉淀聚合法制备右旋邻氯扁桃酸分子印迹聚合物微球. 功能高分子学报 2006, 18 (4), 607-612.
38. Chianella, I.; Piletsky, S. A.; Tothill, I. E.; Chen, B.; Turner, A. P. F., MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR. Biosensors and Bioelectronics 2003, 18 (2–3), 119-127.