研究生: |
黃昱智 Yu-Ji Huang |
---|---|
論文名稱: |
正交分頻多工系統中使用時域窗化方法之載波間干擾抑制技術 An Intercarrier Interference Suppression Technique Using Time-Domain Windowing for OFDM Systems |
指導教授: |
王晉良
Chin-Liang Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
中文關鍵詞: | 正交分頻多工系統 、載波間干擾 、頻率偏移 |
外文關鍵詞: | OFDM, intercarrier interference (ICI), frequency offset |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在正交分頻多工 (OFDM) 系統中,載波間干擾 (ICI) 是影響系統效能的重要因素;這是由於載波頻率間隔 (subcarrier spacing) 窄以及允許頻譜重疊,使得載波間的正交特性 (orthogonality) 易受傳送、接收兩端震盪器不匹配及都卜勒 (Doppler) 效應所破壞的緣故。 傳統的載波間干擾自動消除技術 (ICI self-cancellation scheme) 不需透過頻率偏移補償或頻域等化器 (FEQ)等,即可大幅降低載波間干擾,但卻必須付出頻譜效率 (spectral efficiency) 減半的代價。而利用線性相關碼 (correlative code) 壓抑載波間干擾的技術則不會降低頻譜效率,但是在壓抑頻譜間干擾的效能上卻不夠顯著,而且可能造成錯誤跨OFDM符號傳遞。
在此篇研究中,基於修改線性相關碼壓抑載波間干擾的技術,我們提出了一個新的壓抑載波間干擾的技術,其中主要的不同在於,我們提出的方法中,最後一個子載波上的訊號是與同一個OFDM符號中的第一個子載波上的訊號一起編碼,取代了傳統系統中與下一個OFDM符號中的第一個子載波上的訊號一起編碼,以使其更能抵抗載波間干擾,並且改善錯誤跨OFDM符號傳遞的問題。和原本的系統相比較,我們所提出之方法能只需額外付出些微的硬體複雜度更有效的壓抑載波間干擾,並且防止了錯誤跨OFDM符號傳遞的問題。為了驗證系統效能,我們不僅提供了載波能量對干擾能量比(CIR)的理論推導,也提供了數個電腦模擬結果,兩者都顯示了我們的方法能更有效的壓抑載波間干擾。另外,位元錯誤率 (bit error rate) 的模擬則顯示了修正後的方法因為不會有錯誤跨OFDM符號傳遞的問題而得到了改善。
In orthogonal frequency division multiplexing (OFDM) systems, the property of spectrum overlapping in an orthogonal way makes the system very sensitive to the frequency offset, which is usually introduced by the mismatch of oscillators in the transmitter and receiver or the Doppler effect. It is well known that the intercarrier interference (ICI) caused by the frequency offset may significantly degrade the system performance. Conventional ICI self-cancellation schemes can mitigate the ICI effect dramatically without doing frequency offset compensation, but the expense of halving spectral efficiency makes them less valuable. On the other hand, ICI can be suppressed by performing correlative coding in the frequency domain without halving spectral efficiency; however, this scheme usually cannot provide satisfactory performance in terms of the carrier-to-interference ratio (CIR) and the detection errors generated in the receiver would be propagated through OFDM symbols.
In this thesis, we propose a new ICI suppression scheme that can be regarded as an improved version of the approach based on correlative coding; the main difference is that, for the proposed scheme, the data of the last subcarrier in an OFDM symbol is encoded with that of the first subcarrier in the same OFDM symbol, instead of the data of the first subcarrier in the subsequent OFDM symbol used for the original approach. Due to the cyclic nature, the modified correlative encoding procedure in the frequency domain can be easily realized by a specific time-domain windowing process. As compared to the original correlative coding scheme, the modified approach achieves better performance for ICI suppression and prevents error propagation through OFDM symbols, with a slight increase in the computational complexity at the transmitter but no increase at the receiver. To verify the effectiveness of the proposed scheme, we not only derive the theoretical CIR, but also present a number of computer simulation results, where both of them match pretty well.
[1] R. van Nee and R. Prasad, OFDM for wireless multimedia communications. Artech House, 2000.
[2] ESTI, “Radio broadcasting systems: Digital Audio Broadcasting to mobile, portable and fixed receivers”, European Telecommunication Standard, ETSI EN 300 401 v1.3.2, Sep. 2000.
[3] ETSI, “Digital Video Broadcasting: frame structure, channel coding, and modulation for digital terrestrial television”, European Telecommunication Standard, ETSI EN 300 744 v1.3.1, Aug. 2000.
[4] The Institute of Electrical and Electronics Engineers (IEEE), “Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: high-speed physical layer in the 5 GHz Band”, LAN/MAN Standards Committee of the IEEE Computer Society, Sep. 16, 1999.
[5] The Institute of Electrical and Electronics Engineers (IEEE), “Part 11: Wireless LAN Medium Access Control (MAC) and physical layer (PHY) specifications: Amendment 4: Further higher data rate extension in the 2.4 GHz Band”, LAN/MAN Standards Committee of the IEEE computer Society, 2003.
[6] The Institute of Electrical and Electronics Engineers (IEEE), “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems”, IEEE Std 802.16-2004 (Revision of IEEE Std 802.16-2001).
[7] M. Toeltsch and A.F. Molisch, “Efficient OFDM transmission without cyclic prefix over frequency selective channels”, in Proc. 2000 IEEE Int. Symp. Personal Indoor and Mobile Radio Commun. (PIMRC 2000), vol.2, Sep. 2000, pp. 1363-1367.
[8] M. Toeltsch and A. F. Molisch, “Equalization of OFDM systems by interference cancellation techniques”, in Proc. 2001 IEEE Int. Conf. Commun. (ICC’01), vol. 6, June 2001, pp. 1950-1954.
[9] H. Steendam and M. Moeneclaey, “Analysis and optimization of the performance of OFDM on frequency-selective time-selective fading channels”, IEEE Trans. Commun., vol. 47, Issue 12, pp.1811-1819, Dec. 1999.
[10] P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction”, IEEE Trans. Commun., vol. 42, pp. 2908-2914, Oct. 1994.
[11] Junsong Li and M. Kavehrad, “Effects of time selective multipath fading on OFDM systems for broadband mobile applications”, IEEE Commun. Lett.,vol. 3, pp. 332-334, Dec. 1999.
[12] Y. Zhao and S.-G. Haggman, “Sensitivity to Doppler shift and carrier frequency errors in OFDM systems-the consequences and solutions” in Proc. 46th IEEE Vehicular Technology Conference, 1996 (VTC’96)., vol. 3, April 1996, pp. 1564-1568.
[13] John Terry and Juha Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide. Indianapolis, Indiana: Sams, 2002.
[14] H. Liu and U. Tureli, “A high-efficiency carrier estimator for OFDM communications” IEEE Commun. Lett., vol. 2, Issue 4, April 1998, pp. 104-106.
[15] H. sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting”, IEEE Commun. Mag., vol. 33, no. 2, Feb. 1995, pp. 100-109.
[16] Y. Zhao and S.-G. Haggman, “Intercarrier interference self-cancellation scheme for OFDM mobile communication systems”, IEEE Trans. Commun. vol. 49, Issue 7, July 2001, pp.1185-1191
[17] J. Armstrong, P. M. Grant, and G. Povey, “Polynomial cancellation coding of OFDM to reduce intercarrier interference due to Doppler spread”, in Proc. 1998 IEEE Global Telecommun. Conf. (GLOBECOM ‘98), vol. 5, Nov. 1998, pp. 2771-2776.
[18] Y. Zhao, J.-D. Leclercq and S.-G. Haggman, “Intercarrier interference compression in OFDM communication systems by using correlative coding” Communications Letters, IEEE vol. 2, Issue 8, Aug. 1998, pp. 214-216.
[19] Y. Zhao, “In-band and out-band spectrum analysis of OFDM communication systems using ICI cancellation methods” Communication Technology Proceedings, 2000. WCC - ICCT 2000. International Conference, vol. 1, Aug. 2000, pp. 773-776.
[20] G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference”, IEEE Trans. Inform. Theory, vol. 18, pp. 363-378, May 1972.
[21] O. Dural and J. G. Proakis, “Comparison of two reduced complexity maximum-likelihood sequence detectors for continuous phase modulation scheme” Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th , vol. 4, Oct. 2001, pp. 2510-2513.
[22] E. Kurtas, J. G. Proakis and M. Salehi, “Reduced complexity MLSD algorithms for multi-track magnetic recording systems”, Information Theory. 1997. Proceedings, 1997 IEEE International Symposium on July 1997, pp. 137.
[23] I. Motedayen and A. Anastasopoulos, “Polynomial complexity ML sequence and symbol-by-symbol detection in fading channels” Communications, 2003. ICC '03. IEEE International Conference, vol. 4, May 2003, pp. 2718-2722.