簡易檢索 / 詳目顯示

研究生: 何佳紋
Chia-Wen Ho
論文名稱: 利率過程中的跳躍現象
On jumps in the interest rate
指導教授: 周若珍
Rouh-Jane Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 47
中文關鍵詞: 高斯-卜瓦松-事件吉氏抽樣利率選擇權跳躍-擴散
外文關鍵詞: Gaussian-Poisson-event, Gibbs sampler, interest rate option, jump-diffusion
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,跳躍-擴散模型常被用來描述利率的變化。本論文的主要目的即以跳躍模型為基礎,提供一個預測利率及評價利率型衍生性金融商品的方法。此方法為找出跳躍的時點並將其與總體經濟或聯邦準備理事會公開市場委員會的相關事件進行對照,以找出跳躍發生的原因。實證研究發現,聯邦儲備利率的跳躍現象發生的頻率較三個月國庫券殖利率頻繁,其原因可能是因為聯邦儲備利率較易直接受聯邦儲備局公開市場操作的影響。另外,透過了解跳躍現象發生的原因也有助於評價利率選擇權。


    Jump-diffusion models have been suggested to fit most interest rate processes. The aim of this thesis is to propose a procedure for forecasting the interest rate and pricing the options based on it. This procedure, considering of detecting possible jumps and relating them with economic and monetary events, is applied to the Fed funds rate and 3-month T-bill rate processes. It is seen that the proposed Gaussian-Poisson-event model fits both series better than the pure Gaussian model does. Also seen is there are more jumps in the Fed funds rate than in the yield, a result that is due to the direct impact of the Fed events to Fed funds rate. Empirical studies show that the information about jumps is helpful for the pricing of the interest rate options.

    Contents 1 Introduction 1 2 Jump Models and Interest Rate 5 2.1 Jumps model used in the stock return 5 2.2 Jumps model used in the interest rate 7 3 Model Specification and Jumps detection 10 3.1 Model specification 10 3.2 Jumps detection 13 3.3 Simulation Results 14 4 Empirical Study 20 4.1 Jumps in Fed funds rate and 3-month T-bill rate 20 4.1.1 Jumps in the Fed funds rate 21 4.1.2 Jumps in 3-month T-bill rate 29 4.2 Jumps and the interest rate option pricing 34 4.2.1 In-sample IRX option pricing 35 4.2.2 Out-sample IRX option pricing 37 5 Conclusion and Discussion 40 Appendix 42 Reference 44

    Ahn, C.M., H.E. Thompson (1988). Jump-diffusion process and the term structure of interest rates, Journal of Finance, 43(1), 155-174.

    Attari, M. (1999). Discontinuous interest rate processes: An equilibrium model for bond option prices, Journal of Financial and Quantitative Analysis, 34(3), 293-322.

    Balduzzi, P., E.J. Elton and T.C. Green (2001). Economic news and bond prices: evidence from the US treasury market, Journal of Financial and Quantitative Analysis, 36(4), 523-543.

    Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities, Journal of Political Economy, 81, 637-654.

    Chacko, G. and S.R. Das (2002). Pricing interest rate derivatives: A general approach, The review of financial studies, 15(1), 195-241.

    Chacko, G. and L.M. Viceira (2003). Spectral GMM estimation of continuous-time processes, Journal of Econometrics, 116, 259-292.

    Christiansen, C. and C. Hansen (2002). Implied volatility of interest rate options:an empirical investigation of the market model, Review of Derivatives Research, 5, 51-80.

    Cox, J.C., J. Ingersoll, and S. Ross (1985). A theory of the term structure of interest rates, Econometrica, 53, 385-407.

    Das, S.R. and R.J. Sundaran (1999). Of smiles and smirks: A term structure perspective, Journal of Financial and Quantitative Analysis, 34(2), 211-239.

    Das, S.R. (2002). The surprise element: jumps in the interest rates, Journal of Econometrics, 106, 27-65.

    Duan, J.C. (1995). The GARCH option pricing model, Mathematical Finance, 5, 13-32.

    Ederington, L.H. and J.H. Lee (1993). How markets process information: news releases and volatility, Journal of Finance,48(4), 1161-1191.

    Glasserman, P. and S.G. Kou (2003). The term structure with simple forward rate with jump risk, Mathematical Finance, 13(3), 383-410.

    Guan, L.K., C.T. Ting and M. Warachka (2005). The implied jump risk of LIBOR rates, Journal of Banking&Finance, 29, 2503-2522.

    Heston, S.L. (1993). A close-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 10(1), 53-75.

    Ho, T., S.B. Lee (1986). Term structure movements and the pricing of interest rate contingent claims, Journal of Finance, 41,1011-1029.

    Johannes, M. (2004). The statistical and economic role of jumps in continuous-time interest rate models, Journal of Finance, 59(1), 227-260.

    Jones, C.M., O. Lamont and R.L. Lumsdaine (1998). Macroeconomic news
    and bond market volatility, Journal of Financial Economics, 47, 315-337.

    Kou, S.G. (2002). A jump-diffusion model for option pricing, Management Science, 48, 1068-1101.

    Lewis, A. (2000). Option valuation under stochastic volatility, Financial Press, Newport Beach, CA.

    Lin, S.J. and Huang M.T. (2001). Estimating jump-diffusion models using the MCMC simulation, the 10th Conference on the Theories and Practices of Securities and Financial Markets, Kaohsiung, Taiwan.

    Macbeth, J.D. and L.K. Merville (1979). An empirical examination of
    the Black Scholes call option pricing model, Journal of Finance, 34(5), 1173-1186.

    Merton, R.C. (1976). Option pricing when underlying stock return is discontinuous, Journal of Financial Economics, 3, 125-144.

    Piazzesi M. Bond yields and the Federal Reserve, Journal of political economy,113(2), 311-343.

    Rubinstein, M. (1985). Nonparametric tests of alternative option pricing models using all reported trades and quotes on the 30 most active CBOE option classes from August 23, 1976, Journal of finance, 40, 455-480.

    Sheikh, A.M. (1991). Transaction data of S&P 100 call option pricing, Journal of
    financial and quantitative analysis, 26(4), 459-475.

    Vasicek, O. (1977). An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177-188.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE