簡易檢索 / 詳目顯示

研究生: 謝宜晏
Hsieh, Yi-Yen
論文名稱: 銻錫奈米粒子嵌入非晶碳結構於鉀離子電池負極之應用
SnSb nanoparticles embedded in amorphous carbon as an ultrastable potassium-ion battery anode
指導教授: 段興宇
Tuan, Hsing-Yu
口試委員: 曾院介
呂明諺
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 29
中文關鍵詞: 銻錫奈米粒子鉀離子負極非晶碳結構
外文關鍵詞: SnSb, amorphous carbon, potassium-ion battery, anode
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鉀離子存儲已受到越來越多的關注,並估計該系統可以提供合適的能量密度和低成本,這歸因於鉀源的高操作潛力和豐富的鉀源,用於部署在電網規模的生產和應用中。在此,我們通過簡便的溶膠-凝膠方法設計並合成了封裝在無序碳基質(SnSb@C)中的超小型 SnSb。 SnSb@C 複合材料表現出出色的循環壽命,在 5000 次循環中顯示出 200 mAh g-1 的容量。通過將 SnSb@C 陽極與陰極 (PTCDA) 耦合組裝的全電池也顯示出有吸引力的電化學性能。我們提出並相信這一概念和工作將為設計用於 PIB 的大規模和穩定陽極提供製造方向。


    Potassium ion storage has been given mushrooming attention and estimated the system could provide suitable energy density and low expense ascribed to the high operating potential and abundance of potassium source for deployment in grid-scale production and applications. Herein, we have designed and synthesized the ultrasmall SnSb encapsulated in disordered carbon matrix (SnSb@C) via a facile sol-gel approach. SnSb@C composites exhibited outstanding cycling lifetime with a demonstrated capacity of 200 mA h g-1 over 5000 cycles. A full battery assembled by coupling the SnSb@C anode with cathode (PTCDA) also showed an attractive electrochemical performance. We proposed and believed that this concept and work would give a fabrication direction to design large-scale and stable anodes for PIBs.

    Abstract--------------------i Table of Contents--------------------iv Chapter 1 Introduction--------------------1 Chapter 2 Experimental section--------------------5 2.1 Materials--------------------5 2.2 Preparation of SnSb@C nanocomposites and PTCDA------------5 2.3 Material Characterization--------------------6 2.4 Potassium-Ion battery assembly and electrochemical characterization SnSb@C composites and PTCDA electrode for coin half cell-----------6 2.5 Coin full cell of SnSb@C// PTCDA----------------6 Chapter 3 Result and discussion------------------------7 3.1 Analysis of SnSb@C electrode--------------------7 3.2 Electrochemical performance of SnSb@C and characterization of carbon---------------------12 3.3 Electrochemical performance of SnSb@C// PTCDA Full cell---25 Chapter 4 Conclusion---------27 Reference---------------------28

    [1] M. Chen, Y. Cao, C. Ma, H. Yang, Nano Energy 81 (2021) 105640.
    [2] Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Nat. Commun. 9 (2018) 1-11.
    [3] W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang, S. Guo, Adv. Energy Mater. 8 (2018) 1701648.
    [4] J. Wu, Q. Zhang, S. Liu, J. Long, Z. Wu, W. Zhang, W.K. Pang, V. Sencadas, R. Song, W. Song, Nano Energy 77 (2020) 105118.
    [5] Z. Wang, K. Dong, D. Wang, S. Luo, Y. Liu, Q. Wang, Y. Zhang, A. Hao, C. Shi, N. Zhao, J. Mater. Chem. A 7 (2019) 14309-14318.
    [6] Y. He, L. Wang, C. Dong, C. Li, X. Ding, Y. Qian, L. Xu, Energy Stor. Mater. 23 (2019) 35-45.
    [7] W. Xiao, X. Li, B. Cao, G. Huang, C. Xie, J. Qin, H. Yang, J. Wang, X. Sun, Nano Energy 83 (2021) 105772.
    [8] L. Xing, K. Han, Q. Liu, Z. Liu, J. Chu, L. Zhang, X. Ma, Y. Bao, P. Li, W.A. Wang, Energy Stor. Mater. 36 (2021) 309-317.
    [9] M. Ickler, M. Devi, I. Rogge, J. Singh, A. Kumar, J. Mater. Sci. Mater. Electron. 31 (2020) 6977-6987.
    [10] M. Walter, S. Doswald, M.V. Kovalenko, J. Mater. Chem. A 4 (2016) 7053-7059.
    [11] L. Fan, R. Ma, J. Wang, H. Yang, B. Lu, Adv. Mater. 30 (2018) 1805486.
    [12] J. Zheng, Y. Yang, X. Fan, G. Ji, X. Ji, H. Wang, S. Hou, M.R. Zachariah, C. Wang, Energy Environ. Sci. 12 (2019) 615-623.
    [13] A.E. Danks, S.R. Hall, Z. Schnepp, Materials Horizons 3 (2016) 91-112.
    [14] H. Okamoto, J. Phase Equilibria. Diffus. 33 (2012) 347-347.
    [15] K. Mahendraprabhu, P. Elumalai, J. Chem. Sci. 128 (2016) 831-837.
    [16] J. Qin, T. Wang, D. Liu, E. Liu, N. Zhao, C. Shi, F. He, L. Ma, C. He, Adv. Mater. 30 (2018) 1704670.
    [17] R. Guo, X. Liu, B. Wen, F. Liu, J. Meng, P. Wu, J. Wu, Q. Li, L. Mai, Nanomicro Lett. 12 (2020) 1-12.
    [18] X. Niu, Y. Zhang, L. Tan, Z. Yang, J. Yang, T. Liu, L. Zeng, Y. Zhu, L. Guo, Energy Stor. Mater. 22 (2019) 160-167.
    [19] J. Chen, B. Yang, H. Li, P. Ma, J. Lang, X. Yan, J. Mater. Chem. A 7 (2019) 9247-9252.
    [20] L. Fan, R. Ma, Q. Zhang, X. Jia, B. Lu, Angew. Chem. Int. Ed. Engl. 58 (2019) 10500-10505.
    [21] X. Zhao, P. Xiong, J. Meng, Y. Liang, J. Wang, Y. Xu, J. Mater. Chem. A 5 (2017) 19237-19244.
    [22] Y. Zhao, J. Zhu, S.J.H. Ong, Q. Yao, X. Shi, K. Hou, Z.J. Xu, L. Guan, Adv. Energy Mater. 8 (2018) 1802565.
    [23] L. Li, W. Zhang, X. Wang, S. Zhang, Y. Liu, M. Li, G. Zhu, Y. Zheng, Q. Zhang, T. Zhou, ACS Nano 13 (2019) 7939-7948.
    [24] J. Qin, H.M.K. Sari, C. He, X. Li, J. Mater. Chem. A 7 (2019) 3673-3681.
    [25] H. Huang, R. Xu, Y. Feng, S. Zeng, Y. Jiang, H. Wang, W. Luo, Y. Yu, Adv. Mater. 32 (2020) 1904320.
    [26] X.-D. He, Z.-H. Liu, J.-Y. Liao, X. Ding, Q. Hu, L.-N. Xiao, S. Wang, C.-H. Chen, J. Mater. Chem. A 7 (2019) 9629-9637.
    [27] H. He, D. Huang, Q. Gan, J. Hao, S. Liu, Z. Wu, W.K. Pang, B. Johannessen, Y. Tang, J.-L. Luo, ACS Nano 13 (2019) 11843-11852.
    [28] V. Gabaudan, R. Berthelot, M.T. Sougrati, P.-E. Lippens, L. Monconduit, L. Stievano, J. Mater. Chem. A 7 (2019) 15262-15270.
    [29] S.-B. Huang, Y.-Y. Hsieh, K.-T. Chen, H.-Y. Tuan, Chemical Engineering Journal (2020) 127697.
    [30] L. Qin, N. Xiao, J. Zheng, Y. Lei, D. Zhai, Y. Wu, Adv. Energy Mater. 9 (2019) 1902618.
    [31] L. Liu, Y. Chen, Y. Xie, P. Tao, Q. Li, C. Yan, Adv. Funct. Mater. 28 (2018) 1801989.
    [32] Y. Hu, W. Tang, Q. Yu, X. Wang, W. Liu, J. Hu, C. Fan, Adv. Funct. Mater. 30 (2020) 2000675.
    [33] J. Ge, B. Wang, J. Wang, Q. Zhang, B. Lu, Adv. Energy Mater. 10 (2020) 1903277.
    [34] Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu, Y. Shao, J. Li, J. Sun, Z. Liu, Adv. Funct. Mater. 30 (2020) 1903878.

    QR CODE