研究生: |
徐盛耀 Hsu, Sheng-Yaw. |
---|---|
論文名稱: |
倍半矽氧烷改質氧化石墨烯應用在聚醯亞胺奈米複合材料、聚醯胺醯亞胺奈米複合材料及超級電容器之電極材料的製備與其性質之研究 Preparation and Characterization of Silsesquioxane Modified Graphene Oxide for Application in Polyimide Nanocomposites, Polyamideimide Nanocomposites and Electrode Materials of Supercapacitor |
指導教授: |
馬振基
Ma, Chen-Chi M. 蔡德豪 Tsai, De-Hao |
口試委員: |
胡啟章
Hu, Chi-Chang. 李宗銘 Lee, Trong-Ming 江金龍 Chiang, Chin-Lung. |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 347 |
中文關鍵詞: | 倍半矽氧烷改質氧化石墨烯 、倍半矽氧烷 、氧化石墨烯 、還原氧化石墨烯-錳氧化合物奈米複合材料 、聚醯亞胺樹脂 、聚醯胺醯亞胺樹脂 、抗拉強度 、斷裂伸長率 |
外文關鍵詞: | silsesquioxane-modified graphene oxide, silsesquioxane, graphene oxide, reduced graphene oxide-manganese oxide nanocomposite, polyimide, polyamideimide, tensile strength, elongation at break |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在探討倍半矽氧烷-氧化石墨烯複合材料應用於奈米高分子複合材料與超級電容器的可能性,因此,本論文的研究目的主要有二:
一、以連續式一鍋法製備倍半矽氧烷接枝於氧化石墨烯表面的倍半矽氧烷改質氧化石墨烯,並將改質的氧化石墨烯作為奈米補強材料,成功地製備改質氧化石墨烯/可溶性聚醯亞胺奈米複合材料和改質氧化石墨烯/聚醯胺醯亞胺奈米複合材料,並進而探討倍半矽氧烷改質氧化石墨烯對奈米複合材料的結構、機械性質及熱性質的影響。
二、利用氣溶膠噴灑造粒法製備超級電容器之正負電極的電極材料-還原石墨烯(AS-rGO)與錳氧化物-還原石墨烯(MnOx-rGO)複合材料,除了探討倍半矽氧烷對AS-rGO的表面形態及電化學特性的影響外,並將氣溶膠噴灑造粒法製備的電極材料組裝成超級電容器,以及量測超級電容器的電化學特性。
連續式一鍋法合成倍半矽氧烷改質氧化石墨烯的第一階段反應乃利用BF3MEA作為triethoxysilane之水解與縮合反應的反應觸媒,BF3MEA可以促進aminopropyl triethoxysilane與vinyl triethoxysilane之水解與縮合反應,成功合成倍半矽氧烷。由FT-IR光譜圖及29Si NMR光譜圖檢測本方法製得的倍半矽氧烷之結構為非晶型結構,且是由open-cage及ladder-like結構組成。一鍋法之第二階段反應則利用第一階段反應得到的中間體-含胺基官能基的倍半矽氧烷進行環氧官能基的開環反應及羧酸官能基的酸鹼中和反應,倍半矽氧烷會分別與氧化石墨烯的環氧基及羧酸官能基反應而順利接枝於氧化石墨烯表面,由SEM與TEM相片可以明顯觀察到倍半矽氧烷覆蓋於氧化石墨烯表面。
由於氧化石墨烯於溫度150 oC以上時會有含氧官能基熱裂解的問題,因此將合成的倍半矽氧烷改質的氧化石墨烯(SQ@GO)於150 oC預先進行熱處理,則熱處理後的氧化石墨烯(TSQ@GO)可改善含氧官能基熱裂解的問題,由TGA curve及XPS光譜圖可以明顯得知:於TGA curve中可觀察到,熱處理過的TSQ@GO之重量維持率高於氧化石墨烯與SQ@GO; XPS光譜圖則可得知含氧官能基的濃度大幅下降。
觀察萬能試驗機測試後的斷裂樣品,其破壞面的表面形態顯示TSQ@GO於SPI/TSQ@GO奈米複合材料中呈現良好的分散性和相容性。當添加量增加至10.0 wt%時,未觀察到再堆疊及凝集現象,而且也未觀察到孔洞的產生,因此證實TSQ@GO可降低氧化石墨烯因熱裂解而形成孔洞的問題。再者,當SPI/TSQ@GO奈米複合材料中TSQ@GO的添加量為2.0 wt%時,SPI/TSQ@GO-2.0的抗拉強度為86.73 MPa,斷裂伸長率為20.97 %;與純聚醯亞胺薄膜相比較,抗拉強度增加29 %,而斷裂伸長率更大幅增加207 %。
相對地,TSQ@GO/聚醯胺醯亞胺奈米複合材料中TSQ@GO的添加量為2.0 wt%時,抗拉強度與斷裂伸長率分別為89.61 MPa 和36.66 %,比純聚醯胺醯亞胺薄膜分別高出21 %與160 %。於熱學性質方面,其玻璃轉換溫度及熱膨脹係數也獲得小幅度的改善,其熱膨脹係數約下降18 %;TSQ@GO/聚醯胺醯亞胺奈米複合材料於電氣性質方面,則保持良好的絕緣特性,添加量為3.0 wt%以下之表面電阻皆大於1014 Ω。
由氣溶膠噴霧造粒法製備的倍半矽氧烷-氧化石墨烯複合材料以微波輔助水熱法提升還原程度,並於3 M NaOH水溶液中進行水熱法以去除倍半矽氧烷-氧化石墨烯複合材料的結構中的倍半矽氧烷,即可製得超級電容器之負電極的電極材料(AS-rGO)。由SEM可觀察得到:AS-rGO的表面形態會隨倍半矽氧烷的添加量而產生變化,結果由SPrGO的皺褶球(crumpled ball)轉變為rGO-SQ-50的片狀結構。另外,未經微波輔助水熱法處理的SPrGO的工作電壓為-0.2 V〜0.8 V,而AS-rGO的工作電壓則可擴充至-1 V〜0.8 V。當以工作電壓-1 V〜0 V測試AS-rGO-20與AS-rGO-50的半電池特性時,AS-rGO-20與AS-rGO-50於掃描速率5 mVs-1的比電容值分別為111.7 F g-1及118.0 F g-1。
以氣溶膠噴霧造粒合成的MnOx-rGO奈米複合材料的最佳燒結溫度為500 oC,其平均粒徑介於64-85 nm之間。比較MnOx、MnOx-rGO-2與MnOx-rGO-3的電化學特性,MnOx-rGO-2與MnOx-rGO-3於掃描速率5 mV s-1的比電容值分別為183.1 F g-1及161.2 F g-1,而MnOx的比電容值則為162.2 F g-1。雖然MnOx-rGO-3的比電容值與MnOx相近,但比較CV圖可發現含有還原石墨烯的MnOx-rGO-3其電化學特性優於MnOx。
利用AS-rGO與MnOx-rGO可成功組裝成不對稱超級電容器,其電池電壓可達2 V。於2 A/g的定電流充放電測試中,經過10,000次循環的ASC1550有優異的電池電容保持率(≈下降2 %內),表現出良好的充放電可逆性,且其於電流密度為1 A/g時,最大能量密度和功率密度則分別達到16.6 Wh kg-1和1.052 kW kg-1。
In this study, a facile approach of synthesizing GO-modified for modifying polyimide (PI) and polyamideimide (PAI) nanocomposites with controlled mechanical and thermal properties was demonstrated. Amino-substituted silsesquioxane (SQ) was used as an additive to graft on graphene oxide (GO), silsesquioxane-grafted graphene oxide (SQ@GO) was formed. Fourier-transformed infrared spectroscopy, 29Si nuclear magnetic resonance spectroscopy, thermogravimetric analysis, scanning electron microscope, transmission electron microscope and X-ray photoelectron spectrometer were utilized to investigate the chemical structures of SQ and SQ@GO. Results show that SQ macromolecules were successfully grafted on the surface of GO and then formed TSQ@GO after thermal treatment. Two types of nanocomposite were fabricated by combining TSQ@GO with PAI and PI resin matrix, TSQ@GO/polyamideimide (PAI/TSQ@GO) and TSQ@GO/soluble polyimide (SPI/TSQ@GO). Results show significant improvements on the mechanical and thermal properties after the combination with TSQ@GO to the matrices: the tensile strength enhanced by 21 % and 29 % for PAI/TSQ@GO and SPI/TSQ@GO, respectively; the elongation at break for PAI/TSQ@GO and SPI/TSQ@GO increased by 160 % and 207 %, respectively. For the PAI/TSQ@GO, the glass transition temperature increased from 251 oC up to 261 oC, and the thermal expansive coefficient declined from 94.1 ppm oC-1 down to 76.7 ppm oC-1. This study proposed a method for fabricating GO-PI and GO-PAI nanocomposites , derived from both of soluble polyamideimide and soluble polyimide.
Since the silsesquioxane can be grafted on graphene oxide surface, this study also attempts to study the fabrication of silsesquioxane-graphene oxide (rGO-SQ) and reduced graphene oxide-manganese oxide nanocomposites (MnOx-rGO) via aerosol-based synthetic approach, used as the materials for negative and positive electrodes in an asymmetric supercapacitor (ASC), respectively. Microwave-assisted hydrothermal treatment is employed to form reduced graphene oxide (AS-rGO). Fourier-transformed infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and x-ray photoelectron spectrometry are used to provide complementary material characterizations for the synthesized nanocomposites. The results show that the composition and morphology of the synthesized materials are tunable by the adjustment of precursor concentration and annealing temperature. From the shapes of cyclic voltammetric and galvanostatic charge-discharge curves, the conductivity and the subsequent capacitive performance of MnOx are enhanced effectively by the hybridization of MnOx with rGO. The highest double-layer capacitance of AS-rGO is 118 F g-1, and the highest specific capacitance of MnOx-rGO reaches 180 F g-1 under a scan rate of 5 mV s-1. The ASC assembled with AS-rGO and MnOx-rGO possessed high charge-discharge reversibility at a cell voltage of 2.0 V. A high operation stability of ASC can be achieved, as evidenced by the high retention (98 % of the retention) in the 10,000-cycle charge-discharge test at a current density of 2 A g-1. The maximum specific energy and specific power of the ASC respectively reach 16.6 Wh kg-1 and 1.052 kW kg-1 at a current density of 1 A g-1. This study demonstrates a prototype approach for the fabrication of nanocomposite electrode materials by design with the ability of scalable mass production.
[1]K.S. Novoselov, A.K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos & A. A. Firsov "Two-dimensional gas of massless Dirac Fermions in graphene" Nature; 2005, 438 (7065): 197-200
[2]M.F. Crommie "A Phonon Floodgate in Monolayer carbon: The first STM spectroscopy of graphene flakes yields new surprise" Lawrence Berkeley National Laboratory 2008
[3]S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, et al. "Giant intrinsic carrier mobilities in graphene and its bilayer" Ph.RvL; 2008, 100 (1): 016602.
[4]B. Zhang and R. Asmatulu "Using graphene in coating materials to prevent UV degradation on advanced composite materials" Proceedings of the 6th Annual GRASP Symposium, Wichita State University; 2010.
[5]M. Segal, "Selling graphene by the Ton" Nat Nanotechnol; 2009, 4(10): 612-614
[6]B.Z. Jang and A. Zhamu, "Processing of nanographene Platelets (NGPs) and NGP nanocomposites: a review" Journal of Materials Science; 2008, 43(15): 5092-5101
[7]L.L. Zhang and X.S. Zhao, "Carbon-based materials as supercapacitor electrodes" Chemical Society Reviews; 2009, 38(9): 2520-2531
[8]A.G. Pandolfo and A.F. Hollenkamp, "Carbon properties and their role in supercapacitos" Joural of Power Source; 2006. 157(1): 11-27
[9]馬振基主編, 「奈米材料科技原理與應用」. 第三版,全華科技圖書股份有限公司; 台北, 2014
[10]W.H. Liao, S.Y. Yang, S.T. Hsiao, Y.S. Wang, S.M. Li, C.C.M. Ma, H.W. Tien and S.J. Zeng, "Effect of Octa(aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the mechanical and Dielectric Properties of Polyimide Composites" ACS Appl. Mater. Interfaces; 2014, 6: 15802-15812.
[11]X. Wang, Y. Dai, W. Wang, M. Ren, B. Li, C. Fan and X. Liu, "Fluorographene with High Fluorine/Carbon Ratio: A Nanofiller for Preparing Low-κ Polyimide Hybrid Film" Appl. Mater. Interfaces; 2014, 6: 16182-16188.
[12]Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, " Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding" RSC Adv.; 2015, 5: 24342–24351.
[13]W.Q. Chen, Q.T. Li, P.H. Li, Q.Y. Zhang, Z.S. Xu, P.K. Chu, X.B. Wang and C.F. Yi, "In Situ random co-polycondensation for preparing of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide" J. Mater. Sci.; 2015, 50: 3860-3874.
[14]H. Qiu, T.A. Bechtold, L.T. Lee, W.Y. Lee, "Granules of graphene oxide by spray drying " US20140205841 A1.
[15]X. Wang, X. Fan, G. Li, M. Li, X. Xiao, A. Yu, Z. Chen, " Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors " Cabon; 2015, 93: 258-265.
[16]J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A.L.M. Reddy, J. Yu, R. Vajtai, P.M. Ajayan, "Ultrathin Planar Graphene Supercapacitors" Nano Lett.; 2011, 11: 1423-1427.
[17]A.K. Geim, K.S. Novoselov "The rise of graphene" Nature materials; 2007, 6: 183-91.
[18]B. Zhang and R. Asmatulu, "Using graphene in coating materials to prevent UV degradation on advanced composite materials" Proceedings of the 6th Annual GRASP Symposium, Wichita State University, 2010.
[19]R.H. Baughman, A.A. Zakhidov, W.A. de Heer "Carbon nanotubes--the route toward applications" Science; 2002, 297: 787-792.
[20]林瑋寧. 碳奈米管/奈米石墨烯片/環氧樹脂複合材料之製備及其性質之研究. 清華大學化學工程學系碩士論文. 2010; 1-231.
[21]C. Soldano, A. Mahmood, E. Dujardin "Production, properties and potential of graphene" Carbon; 2010, 48: 2127-2150.
[22]D. Chen, L. Tang, J. Li "Graphene-based materials in electrochemistry" Chemical Society Reviews; 2010, 39: 3157-3180.
[23]S.S. Li, C.W. Lin, K.C. Wei, C.Y. Huang, P.H. Hsu, H.L. Liu, Y.J. Lu, S.C. Lin, H.W. Yang, C.C.M. Ma "Non-invasive screening for early Alzheimer’s disease diagnosis by a sensitively immunomagnetic biosensor" Scientific Reports; 2016, 6: 25155
[24]S.C. Lin, C.C.M. Ma, S.T. Hsiao, Y.S. Wang, C.Y. Yang, W.H. Liao, S.M. Li, J.A. Wang, T.Y. Cheng, C.W. Liu, R.B. Yang "Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene" Applied surface science; 2016, 385: 436-444
[25]C.K. Cheng, C.H. Lin, H.C. Wu, C.C.M. Ma, T.K. Yeh, H.Y. Chou, C.H. Tsai, C.K. Hsieh "The Two-Dimensional Nanocomposite of Molybdenum Disulfide and Nitrogen-Doped Graphene Oxide for Efficient Counter Electrode of Dye-Sensitized Solar Cells" Nanoscale Research Letters; 2016, 11: 117.
[26]S. Radic, et al., "Competitive binding of Natural Amphiphiles with Graphene Derivatives" Sci. Rep.; 2013.3.
[27]D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff "The chemistry of graphene oxide" Chemical Society Reviews; 2010, 39: 228-240.
[28]M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, et al. "Single sheet functionalized graphene by oxidation and thermal expansion of graphite" Chemistry of Materials; 2007, 19: 4396-4404.
[29]H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen " Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors" ACS Nano; 2008, 2: 463-470.
[32]P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt "Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide" Macromolecular rapid communications; 2009, 30: 316-327.
[31]J. Paredes, S. Villar-Rodil, M. Fernandez-Merino, L. Guardia, A. Martínez-Alonso, J. Tascon "Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide" Journal of Materials Chemistry; 2011, 21: 298-306.
[32]X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang et al. "Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation" Advanced Materials; 2008, 20: 4490-4493.
[33]D. Arco, L. Gomez, Y. Zhang, A. Kumar, C. Zhou "Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition" Nanotechnology IEEE Transactions ; 2009, 8: 135-138.
[34]K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos et al. "Electric field effect in atomically thin carbon films" Science; 2004, 306: 666-669.
[35]Y. Zhang, B.W. Brar, F. Wang, C. Girit, Y. Yayon, M. Panlasigui, A. Zettl and M.F. Crommie "Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-ttunable graphene" Nature Physics; 2008, 4: 627-630.
[36]K.S. Novoselov, S.V. Morozov, T.M.G. Mohinddin, L.A. Ponomarenko, D.C. Elias, R. Yang et al. "Electronic properties of graphene " Physica status solidi (b); 2007, 244(11): 4106-4111.
[37]A. Balandin, S. Ghosh, D. Teweldebrhan, I. Calizo, W. Bao, F. Mia, et al. "Extremely high thermal conductivity of graphene: Prospects for thermal management applications in silicon nanoelectronics" Silicon Nanoelectronics Workshop, 2008 SNW 2008 IEEE: IEEE; 2008. p. 1-2.
[38]C. Lee, X. Wei, J.W. Kysar, J. Hone "Measurement of the elastic properties and intrinsic strength of monolayer graphene" Science; 2008, 321: 385-388.
[39]R.M. Laine and S. Sulaiman " Properties Tailoring In Silsesquioxanes " US20100222503A1.
[40]J. Meads, F. Kipping "The polymer-like character of the compounds which were assigned the formula (XSiO)20" Journal of the American Chemical Society; Easton 1914, 105: 679.
[41]J.F. Jr Brown, L.H. Jr Vogt "The polycondensation of cyclohexylsilanetriol" J. Am. Chem. Soc.; 1965, 87(19): 4313-4317.
[42]J.F. Jr Brown, L.H. Jr Vogt, A. Katchman, J.W. Eustance, K.M. Kiser and K.W. Krantz "Double chain polymers of phenylsilsesquioxane" J. Am. Chem. Soc;. 1960, 82(23): 6194-6195.
[43]E.P. Plueddemann "Silane Coupling Agent" second edition, Plenum Press, New York and London, 1991
[44]J.F. Jr Brown "The Polycondensation of Phenylsilanetriol" J. Am. Chem. Soc.; 1965, 87: 4317-4324.
[45]C.U. Pittman, G.Z. Li, H. Ni "Hybrid inorganic/organic crosslinked resins containing polyhedral oligomeric silsesquioxanes" Macromol. Symp.; 2003, 196: 301-325.
[46]T.M. Bogert and R.R. Renshaw "4-AMINO-0-PHTHALIC ACID AND SOME OF ITS DERIVATIVES" J. Am. Chem. Soc.; 1908, 30(7): 1135-1144.
[47]K.L. Mitttal "Polyimide: synthesis, characterization, and applications " Plenum Publishing Corporation 1984.
[48]M. Ghosh "Polyimide: fundamentals and applications" CRC Press 1996.
[49]DuPont Kapton@ Polyimide film. http://www.dupont.com/.
[50]I.K. Varma, A. Gupta "Addition polyimide. II. Polyaspartimide oligomers" Journal of Polymer Science: Polymer Letter Edition; 1982, 20(12): 621-627.
[51]J.O. Simpson, A.K. St. Clair "Fundamental Insight on Developing Low Dielectric Constant Polyimides" Thin Solid Films; 1997, 308-309: 480-485.
[52]L. Li, L. Qinghua, Y. Jie, Q. Xuefeng,W. Wenkai, Z. Zikang, et al. "Photosensity polyimide (PSPI) materials containing inorganic nano particle (1) PSPI/ITO 2 hybrid materials by sol-gel process" MCP; 2002, 74(2): 210-213.
[53]T. Banba, T. Takeda, N. Takeda, E. Takeuchi,A. Tokoh "Positive photo-sensitive resin composition comprising a photosensitive polybenzoxazole or a mixture of a polybenzoxazole, an organic solvent soluble polymer and a diazoquinone and/or a dihydropyridine compound" Google Patents 1995.
[54]T. Yamashita "Photosensity polyimides: Fundamentals and Application" CRC Press 1995.
[55]A.K.S. Clair, T.L.S. Clair "Addition polyamide adhesives containing various end groups" Polymer Engineering & Science; 1982, 22(1): 9-14.
[56]T. Pascal, R. Mercier, B. Sillion "New semi-interpenetrating polymeric networks from linear polyimides and thermosetting bismaleimides: 2. Mechanical and thermal properties of the blends" Polymer; 1990, 31(1): 78-83.
[57]R.H. Pater "Interpenrtrating polymer network approach to tough and microcracking resisteant high temperature polymers. Part III. LaRC RP71" Polymer Engineering & Science; 1991, 31(1): 28-33.
[58]M. Sefcik, E. Stejskal, R. McKay, J. Schaefer "Investigation of the structure of acetylene-terminated polyimide resins using magic-angle carbon-13 nuclear magnetic resonance" Macromolecules; 1979, 12(3): 423-425.
[59]UBE Upilex@ Polyimide film. http://www.upilex.jp/en/upilex.html.
[60]GE Ultem@ TPI. http:// www.kda1969.com/materials /pla_mate_pei.htm.
[61]三井化學Aurum@ TPI. http:// /www.jst.go.jp/sip/k03/sm4i/ project/researcher-a.html.
[62] Solvay Torlon@ TPI. http://www. kda1969.com /materials /plamate pai.htm.
[63] NASA TPI Larc-II. https://ntrs.nasa.gov/search.jsp?R=19870040862.
[64]R.M. Ottenbrite, A. Yoshimatsu, J.G. Smith "Preparation of polyimides utilizing the diels-alder reaction. 1.Bis (3,4-dimethylenepyrrolidyl) arylene with bismaleimide" Polym. Adv. Technol.; 1990, 1(2): 117-125.
[65]D. Likhatchev, C. Gutierrez-Wing, I. Kardash, R. Vera-Graziano "Soluble aromatic polyimides based on 2,2-bis(3-amino-4-hydroxyphenyl) hexafluoropropane: Synthesis and properties" Journal of Applied Polymer Science 1996; 59(4): 725-735.
[66]F. Li, J.J. Ge, P.S. Honligfort, S. Fang, J.C. Chen, F.W. Harris, et al. "Dianhydride architectural effects on the relaxation behaviors and thermal and optical properties of organo-soluble aromatic polyimide films" Polymer; 1999, 40(18): 4987-5002.
[67]D. Ayala, A.E. Lozano, J. de Abajo, J.G. de La Campa "Novel polyimides with p-nitrophenyl pendant group. Synthesis and characterization" Journal of Polymer science Part A: PolymerChemistry; 1999, 37(16): 3377-3384.
[68I.K. Spiliopoulos, J.A. Mikroyannidis "Aromatic polyamides and polyimides bearing bulky ether pendent groups derived from 1-aryloxy-2,4-diaminobenzenes" Polymer; 1996, 37(15): 3331-3337.
[69]Y. Imai, N. M. Maldar, and M. Kakimoto " Synthesis and characterization of aromatic polyamide‐imides from 2,5‐bis(4‐aminophenyl)‐3,4‐diphenylthiophene and 4‐chloroformylphthalic anhydride" J. Polym. Sci., Part A: Polym. Chem. Ed.; 1985, 23: 2077.
[70]M. Kakimoto, R. Akiyama, Y. S. Negi, and Y. Imai " Synthesis and characterization of aromatic polyimide and polyamide‐imide from 2,5‐bis(4‐isocyanatophenyl)‐3,4‐diphenylthiophene and aromatic tetra‐ and tricarboxylic acids" J. Polym. Sci., Part A: Polym. Chem. Ed.; 1988, 26: 99.
[71]W,Wrasidlo and J. M. Augl "Aromatic polyimide-co-amides. I" J. Polym. Sci., Part A: Polym. Chem. Ed. 1969, 7: 321.
[72]J. L. Nieto, J. G. de la Campa, and J. de Abajo " Aliphatic‐aromatic polyamide‐imides from diisocyanates, 1. 1H and 13C NMR study of polymer structure" Makromol. Chem.; 1982, 183: 557.
[73]J. G. de la Campa, J. de Abajo, and J. L. Nieto " Aliphatic‐aromatic polyamide‐imides from diisocyanates, 2†. Study of the influence of the reaction conditions on polymer structure" Makromol. Chem. 1982, 183: 571.
[74]C. P. Yang, and S. H. Hsiao " Preparation of poly(amide‐imide)s by means of triphenyl phosphite, 1. Aliphatic‐aromatic poly(amide‐imide)s based on trimellitimide" Makromol. Chem. 1989, 190: 2119.
[75]C. P. Yang, and Y. Y. Yen " New poly(amide‐imide)s syntheses. I. Soluble high‐temperature poly(amide‐imide)s derived from 2,5‐bis(4‐trimellitimidophenyl)‐3,4‐diphenylthiophene and various aromatic diamines" J. Polym. Sci., Part A: Polym. Chem. Ed.; 1992, 30: 1855.
[76]G. E.Bower, L.W. Frost "Aromatic Polyimides" J. Polym. Sci., Part A: Polym. Chem. Ed.; 1963, 1: 3135.
[77]K. Kurita, H. Itoh, and Y. Iwakura, E.Bower, L.W. Frost " Polyimides derived from bismethylolimides. I. Polyamide–imides from bismethylolimides and dinitriles" J. Polym. Sci., Part A: Polym. Chem. Ed. 1978, 16: 779.
[78]M. Fujimoto, T.Oishi, M.Momio, and S. Murata "Synthesis of Polyamide-imides from 2,7-fluorenediamine" Nippon Kagaku Kaishi; 1976, 9:1465.
[79]G. Timp "Nanotechnology" Springer-Verlag New York, Inc., 1999.
[80]M. Wilson, et al. "Nanotechnology- basic science and emerging technologies" University of New South Wales Press Ltd, 2002.
[81]J. M. Plitzko, et al. "Nanostructured Interfaces" MRS Symposium Proceeding; 2002:722
[82]G.Whitesides, J. Kriebel and B. Mayers "Self-Assembly and Nanostructured Materials "Nanostructure Science and Technology" New York: Springer Science + Business, 2005. 217-239.
[83]E.L. Dreizin "Metal-base reactve nanomaterials" Progress in Energy and Combustion Science; 2009, 35(2): 141-167.
[84]C. Berg "A Introduction to Interfaces & Colloids: The Bridge to Nanoscience" 2010.
[85]T.D. Nguyen and T.O. Do " Size- and Shape-Controlled Synthesis of Monodisperse Metal Oxide and Mixed Oxide Nanocrystals" Nanocrystal, ed. Y. Masuda, In Tech 2011; 2: 55-85.
[86]A. Huczko "Template-based synthesis of nanomaterials" Applied Physics: A Materials Science & Process; 2000, 70(4): 365-376.
[87]K. Okuyama, I.W. Lenggoro "Preparation of nanoparticles via spray rout" Chemical Engineering Science; 2003, 58(3-6): 537-547.
[88]Y.F. Liu et al. "Aerosol-assisted self-assembly of mesostructured spherical nanoparticles" Abstrates of Papers of the American Chemical Society; 1999, 218: 426.
[89]D.A Firmansyah et al. "Microstructure-Controlled Aerosol-Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres" Langmuir, 2012, 28(5): 2890-2896.
[90]K. Okuyama "Preparation of micro-controlled particles using aerogel process" Journal of Aerogel Socience; 1991, 22: S7-S10.
[91]A.B.D. Nandiyanto, K. Okuyama "Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges" Advanced Power Technology; 2011, 22(1):1-19.
[92]H. Chang, H.D. Jang "Controlled synthesis of porous particles via aerosol processing and their applicaations" Advanced Power Technology; 2014, 25(1): 32-42.
[93]http://euanmearns.com/emissions-reductions-and-world-energy-demand-growth/
[94] http://www.energyintime.eu/renewable-industry/
[95] NOAA http://www.ncdc.noaa.gov/temp-and-precip/state-temps/.
[96] 能源資訊網, http://emis.erl.itri.org.tw /news/news /upt.asp? p0=3951.
[97] Knowledge TRIWo. http://apps.webofknowledge.com.
[98]J. Zhang, X. Zhao "On the configuration of supercapacitors for maximizing electrochemical performance" Chem. Sus. Chem.; 2012, 5: 818-841.
[99]X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li "Flexible solid-state supercapacitors: Design, fabrication and applications" Energy & Environmental Science; 2014, 7: 2160-2181.
[100]A. Pandolfo, A. Hollenkamp "Carbon properties and their role in supercapacitors" Journal of power sources; 2006, 157: 11-27.
[101] http://www.maxwell.com/.
[102] LS Mtron Hi-tech center hwuckuih.
[103]Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, et al. "Graphene-based materials for flexible supercapacitors" Chemical Society Reviews; 2015, 44: 3639-3665.
[104]M. Pasta, F. La Mantia, L. Hu, H.D. Deshazer, Y. Cui "Aqueous supercapacitors on conductive cotton" Nano Research, 2010, 3: 452-458.
[105]V. L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, et al. "Flexible energy storage devices based on nanocomposite paper" Proceedings of the National Academy of Sciences; 2007, 104: 13574-13577.
[106]鄭茲瑀. 石墨烯系可撓式超電容複合電極之製備與性質研究. 清華大學化學工程學系碩士論文, 2016.
[1] http://technews.tw/2018/06/25/detailed-explanation-7nm-processes/
[2] http://www.taifer.com.tw/taifer/tf/044006/49.htm
[3] G. Timp, "Nanotechnology", Springer-Verlag New York, Inc., 1999.
[4]M. Wilson, et. al, "Nanotechnology- basic science and emerging technologies", University of New South Wales Press Ltd, 2002.
[5]馬振基,"奈米材料科技原理與應用"1-6頁,第三版, 全華圖書公司,新北市,2017.
[6]H.S. Nalwa, "Handbook of Orgainc-inorganic Hybrid material and Nanocomposites", American Scientific Publishers, 2002.
[7]馬振基,"高分子複合材料(上)",國立編譯館 台北市,1995.
[8]M.M. Schwartz "Composite Materials Handbook", McGraw-Hill Book Co. New York, N.Y., 1984
[9]M. Segal, "Selling graphene by the Ton" Nat Nanotechnol. 2009; 4(10): 612-614
[10]R. Beech, "Angstron Introduces Low Cost Graphene Platelets. Additives for Polym. 2008
[11]B. C. Brodie "Sur le poids atomique du graphite" Ann. Chim. Phys.; 1860, vol 59: 466.
[12]L. Staudenmaier, "Verfahren zur Darstellung der Graphitsäure" Berichte der deutschen chemischen Gesellschaft; 1898, vol 31 (2): 1481–1487.
[13]S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide" Carbon; 2007, vol 45 (7): 1558–1565.
[14]S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon. "Solution Properties of Graphite and Graphene" J. Am. Chem. Soc.; 2006, vol 128 (24): 7720–7721
[15]L.B. Zhang, J.Q. Wang, H.G. Wang, Y. Xu, Z.F. Wang, Z.P. LI, Y.J. Mi and S.R. Yang, "Preparation, mechanical and thermal properties of functionalized graphene/ polyimide nanocomposites" Composites: Part A; 2012, 43: 1537-1545.
[16]I.H Tseng, J.C. Chang, S.L. Huang and M.H. Tsai, "Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposites film by addition of functionalized graphene oxide" Polym. Int.; 62: 827-835.
[17]C. Min, P. Nie, H.J. Song, Z. Zhang, K. Zhao, "Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition" Tribology International; 2014, 80: 131–140.
[18]W.H. Liao, S.Y. Yang, S.T. Hsiao, Y.S. Wang, S.M. Li, C.C.M. Ma, H.W. Tien and S.J. Zeng, "Effect of Octa(aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the mechanical and Dielectric Properties of Polyimide Composites" ACS Appl. Mater. Interfaces; 2014, 6: 15802-15812.
[19]X. Wang, Y. Dai, W. Wang, M. Ren, B. Li, C. Fan and X. Liu, "Fluorographene with High Fluorine/Carbon Ratio: A Nanofiller for Preparing Low-κ Polyimide Hybrid Film" Appl. Mater. Interfaces; 2014, 6: 16182-16188.
[20]R.P. Pandey and V.K. Shahi, "Sulphonated imidized graphene oxide (SIGO) based polymer electrolyte membrane for improved water retention, stability and proton conductivity" J. Power Sources; 2015, 299: 104-113.
[21]L. He, P. Zhang, H. Chen, J. Sun, J. Wang, C. Qin and L. Dai, "Preparation of polyimide/siloxane-functionalized graphene oxide composite films with high mechanical properties and thermal stability via in situ polymerization" Polym. Int.; 2016, 65: 84-92.
[22]C. Wang, Y. Lan, W. Yu, X. Li, Y. Qian and H. Liu, "Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties" Appl. Surf. Sci.; 2016, 362: 11-19.
[23]Y. Lu, J. Hao, G. Xiao, H. Zhao, Zhizhi Hua, T. Wang, "In situ polymerization and performance of alicyclic polyimide/graphene oxide nanocomposites derived from 6FAPB and CBDA" Applied Surface Science; 2017, 394: 78–86
[24]L.L. Zhang and X.S. Zhao, "Carbon-based materials as supercapacitor electrodes" Chemical Society Reviews; 2009, 38(9): 2520-2531
[25]A.G. Pandolfo and A.F. Hollenkamp, "Carbon properties and their role in supercapacitos" Joural of Power Source; 2006, 157(1): 11-2
[26]R. Ryntz, R. Kohl, "Soluble Diels-Alder Aromatic Polyimide" Abstrate of papers of the Ameican Chemical Society, vol: 186, American Chemical Soc. 1155 16th St. NW, Washington, DC 20036; 1983 p.122.
[27]F. Li, J.J. Ge, P.S. Honligfort, S. Fang, J.C. Chen, F.W. Harris, et al. "Dianhydride architectural effects on the relaxation behaviors and thermal and optical properties of organo-soluble aromatic polyimide films" Polymer; 1999, 40(18): 4987-5002.
[28]D.H. Wang, M.J. Arlen, J.B. Baek, L.S. Tan "Nanocomposites Derived from a low-color aromatic polyimide (CP2) and Amine-Functionalized Vapor-Grown Carbon Nanofibers: In Situ Polymerization and characterization" Macromolecules; 2007, 40(17): 6100-6111.
[29]I.S. Chung, C.E. Park, M. Ree, S.Y. Kim "Soluble Polyimides Containing Benimidazole Rings for Interlevel Dielectrics" Chem. Mater.; 2001, 13(9): 2801-2806.
[30]C.P. Yang, S.H. Hsiao, K.L. Wu "organosoluble and light-colored fluorinated polyimides derived from 2,3-bis94-amino-2-trifluoromethylphenoxy) naphthalene and aromatic dianhydrides" Polymer; 2003, 44(23): 7067-7078.
[31]D. Likhatchev, C. Gutierrez-Wing, I. Kardash, R. Vera-Graziano "Soluble aromatic polyimides based on 2,2-bis(3-amino-4-hydroxyphenyl) hexafluoropropane: Synthesis and properties" Journal of Applied Polymer Science, 1996, 59(4): 725-735.
[32]S.U. Kim, C. Lee, S. Sundar, W. Jang, S.J. Yang, H. Han "Synthesis and characterization of soluble polyimides containing trifluoromethyl groups in their backbone" J. Polymer Sci. Part B: Polym. Phys.; 2004, 42(23): 4303-4312.
[33]D. Chen, H. Zhu and T. Liu, "In Situ Thermal Preparation of Polyimide Nanocomposite Films Containing Functionalized Graphene Sheets" Appl. Mater. Interfaces; 2010, 2: 3702-3708.
[34]M. Koo, J.S. Bae, S.E. Shim, D. Kim, D.G. Nam, J.W. Lee, G.W. Lee, J.H. Yeum and W. Oh, "Thermo-dependent characteristics of polyimide-graphene composites" Colloid Polym. Sci.; 2011, 289: 1503-1509.
[35]C.Y. Tseng, Y.S. Ye, M.Y. Cheng, K.Y. Kao, W.C. Shen, J. Rick, J.C. Chen and B.J. Hwang, "Sulfonated Polyimide Proton Exchange Membranes with Graphene Oxide show Improved Proton Conductivity, Methanol Crossover Impedance, and Mechanical Properties" Adv. Energy Mater.; 2011, 1: 1220-1224.
[36] T. Huang, R. Lu, C. Su, H. Wang, Z. Guo, P. Liu, Z. Huang, H. Chen,. T. Li, "Chemically Modified Graphene/Polyimide Composite Films Based on Utilization of Covalent Bonding and Oriented Distribution " ACS Appl. Mater. Interfaces; 2012, 4 (5): 2699–2708.
[37]M. Yoonessi, Y. Shi, D.A. Scheiman, M. Lebron-Colon, D. M. Tigelaar, R. A. Weiss, M.A. Meador, "Graphene Polyimide Nanocomposites; Thermal, Mechanical, and High-Temperature Shape Memory Effects" ACS Nano; 2012, vol 6 (9): 7644–7655
[38]O.K. Park, J.Y. Hwang, M. Goh, J.H. Lee, B.C. Ku and N.H. You, "Mechanically Strong and Multifuctional Polyimide Nanocomposites Using Aminophenyl Functionalized Graphene Nanosheets" Macromolecules; 46: 3505-3511, 2013.
[39]J. Lim, H. Yeo, M. Goh, B.C. Ku, S.G. Kim, H.S. Lee, B. Park and N.H. You, "Grafting of Polyimide onto Chemically-functionalized Graphene Nanosheets for Mechanically-strong Barrier Membranes" Chem. Mater.; 2015, 27: 2040-2047.
[40]L. Cao, Q. Sun, H. Wang, X. Zhang and H. Shi, "Enhanced stress transfer and thermal properties composites with covalent functionalized reduced graphen oxide" Composites: Part A; 2015, 68: 140-148.
[41]Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, " Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding" RSC Adv; 2015, 5: 24342–24351.
[42]W.Q. Chen, Q.T. Li, P.H. Li, Q.Y. Zhang, Z.S. Xu, P.K. Chu, X.B. Wang and C.F. Yi, "In Situ random co-polycondensation for preparing of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide" J. Mater. Sci.; 2015, 50: 3860-3874.
[43]胡啟章. 電化學原理與方法(二版): 五南圖書出版股份有限公司; 2011.
[44]A.J. Faulkner, L.R. Ba "Electochemical Methods Fundamentals and Applications" in John Wiley & Sonic, Inc 2001.
[45]陳奕勳. 陽極沈積錳系水合氧化物於電化學超級電容器之應用: 撰者; 2003.
[46]電化學教室 http://catchfrog.myweb.hinet.net/system.html.
[47]L.L. Zhang, R. Zhou, X. Zhao "Graphene-based materials as supercapacitor electrodes" Journal of Materials Chemistry.;2010, 20: 5983-5992.
[48]H.I. Becker "Low voltage electrolytic capacitor" United States Patent 2,800,616; 1957.
[49]Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, et al. "Progress of electrochemical capacitor electrode materials: A review" International journal of hydrogen energy, 2009, 34: 4889-4899.
[50]L.L. Zhang, X. Zhao "Carbon-based materials as supercapacitor electrodes" Chemical Society Reviews; 2009, 38: 2520-2531.
[51]B.E. Conway "Electrochemical supercapacitors: scientific fundamentals and technological applications" Springer Science & Business Media; 2013.
[52]J.W. Park, E.S. Lee, Y.H. Moon "New development of combined electrochemical processes for mirror-like micro grooves" Proceedings of the 17th annual ASPE meeting 2002: 671-676.
[53]E. Frackowiak "Carbon materials for supercapacitor application" Physical chemistry chemical physics; 2007, 9: 1774-1785.
[54]P. Simon, Y. Gogotsi "Materials for electrochemical capacitors" Nature materials; 2008, 7: 845-854.
[55]Y. Huang, J. Liang, Y. Chen "An Overview of the Applications of Graphene‐Based Materials in Supercapacitors" Small; 2012, 8: 1805-1834.
[56]P. Yu, X. Zhang, D. Wang, L. Wang, Y. Ma "Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors" Crystal Growth and Design; 2008, 9: 528-533.
[57]H. Gao, F. Xiao, C.B. Ching, H. Duan "High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2" ACS applied materials & interfaces; 2012, 4: 2801-2810.
[58]A. Davies, A. Yu "Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene" The Canadian Journal of Chemical Engineering; 2011, 89: 1342-1357.
[59]鄭茲瑀. 石墨烯系可撓式超電容複合電極之製備與性質研究. 清華大學化學工程學系碩士論文. 2016.
[60]K.H. Chang, Y.F. Lee, C.C. Hu, C.I. Chang, C.L. Liua , Y.L. Yang, "A unique strategy for preparing single-phase unitary/binary oxides–graphene composites" Chem. Commun.; 2010, 46: 7957–7959.
[61]J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A.L.M. Reddy, J. Yu, R. Vajtai, P.M. Ajayan, "Ultrathin Planar Graphene Supercapacitors" Nano Lett.; 2011, 11: 1423–1427.
[62]Y.W. Chi, C.C. Hu,. H.H. Shen, K.P. Huang, "New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping" Nano Lett.; 2016, 16: 5719−5727.
[63]B. Mendoza-Sa´nchez, B. Rasche, V. Nicolosi, P.S. Grant, " Scaleable ultra-thin and high power density graphene electrochemical capacitor electrodes manufactured by aqueous exfoliation and spray deposition" Cabon; 2013, 52: 337−346.
[64]M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, " High concentration, surfactant-stabilized graphene dispersions " ACS Nano; 2010, 4(6): 3155–3162.
[65]C. Wang, Y. Wang, J. Graser, R. Zhao, F. Gao, M.J. O’Connell, "Solution-Based Carbohydrate Synthesis of Individual Solid, Hollow, and Porous Carbon Nanospheres Using Spray Pyrolysis" ACS NANO; 2013, v: 11156−11165.
[66]J.S. Lee, S.I. Kim, J.C. Yoon, J.H. Jang, " Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor" ACS Nano; 2013, 7: 6047–6055.
[67]H. Qiu, T.A. Bechtold, L.T. Lee, W.Y. Lee, "Granules of graphene oxide by spray drying " US20140205841 A1.
[68]Z. Li, D. Wu, Y. Liang, R. Fu, K. Matyjaszewski, "Synthesis of Well-Defined Microporous Carbons by Molecular-Scale Templating with Polyhedral Oligomeric Silsesquioxane Moieties" J. Am. Chem. Soc.; 2014, 136: 4805−4808
[69]X. Wang, X. Fan, G. Li, M. Li, X. Xiao, A. Yu, Z. Chen, " Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors " Cabon; 2015, 93: 258−265.
[70]H. Tang, Y. Zenga, X. Gaob, B. Yaob, D. Liu, J. Wua, D. Quc, K. Liub, Z. Xiec, H. Zhanga, M. Pana, L. Huangb, S. P. Jiang, " Octa(aminophenyl)silsesquioxane derived nitrogen-doped well-defined nanoporous carbon materials: Synthesis and application for supercapacitors" Electrochimica Acta; 2016, 194: 143–150.
[71]D. Liu, G. Chenga, H. Zhaoa, C. Zenga, D. Qua, L. Xiaoa , H. Tang, Z. Dengb, Y. Lib, B.L. Su, "Self-assembly of polyhedral oligosilsesquioxane (POSS) into hierarchically ordered mesoporous carbons with uniform microporosity and nitrogen-doping for high performance supercapacitors" Nano Energy; 2016, 22: 255–268.
[72]F. Sun, H. Wu, X. Liu, F. Liu, H. Zhou, J. Gao1, Y. Lu, " Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitor" Nano Research; 2016, 9(11): 3209–3221.
[73]S.C. Lin, Y.T. Lu, Y.A. Chien, J.A. Wang, T.H. You, Y.S. Wang, C.W. Lin, C.C.M. Ma, C.C. Hu, "Asymmetric supercapacitors based on functional electrospun carbon nanofiber/manganese oxide electrodes with high power density and energy density" Journal of Power Sources; 2017, 362: 258–269.
[74]S.C. Lin, Y.T. Lu, Y.A. Chien, J.A. Wang, P.Y. Chen, C.C.M. Ma, C.C. Hu, "Asymmetric supercapacitors based on electrospun carbon nanofiber/sodium-pre-intercalated manganese oxide electrodes with high power and energy densities" Journal of Power Sources; 2018, 393: 1-10.
[1]K. Meisetsu, et al. "Development and Application of Inorganic-organic Hybrid Material" CMC; 2001.
[2]H.S. Nalwa, Handbook of Orgainc-inorganic Hybrid material and Nanocomposites, American Scientific Publishers, 2002.
[3]C. Lee, X. Wei, J.W. Kysar, J. Hone "Measurement of the elastic properties and intrinsic strength of monolayer graphene" Science; 2008, 321: 385-388.
[4]廖韋豪. 具低介電常數及高機械性能之氧化石墨烯/聚亞醯胺複合材料之製備. 清華大學化學工程學系博士論文. 2015.
[5]W.H. Liao, S.Y. Yang, S.T. Hsiao, Y.S. Wang, S.M. Li, C.C.M. Ma, H.W. Tien, S.J. Zeng "Effect of Octa(aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the mechanical and Dielectric Properties of Polyimide Composites" ACS Appl. Mater. Interfaces; 2014, 6: 15802-15812.
[6]L. He, P. Zhang, H. Chen, J. Sun, J. Wang, C. Qin, L. Dai "Preparation of polyimide/siloxane-functionalized graphene oxide composite films with high mechanical properties and thermal stability via in situ polymerization" Polym. Int.; 2016, 65: 84-92.
[7]H. Ni, J. Liu, Z. Wang, S. Yang " A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications" Journal of Industrial and Engineering Chemistry; 2015, 28: 16-27.
[8]J. Lim, H. Yeo, M. Goh, B.C. Ku, S.G. Kim, H.S. Lee, B. Park, N.H. You "Grafting of Polyimide onto Chemically-functionalized Graphene Nanosheets for Mechanically-strong Barrier Membranes" Chem. Mater.; 2015, 27: 2040-2047.
[9]S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhannes, Y. Jia, Y. Wu, SB.T. Nguyen, R.S. Ruoff "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide" Carbon; 2007, 45: 1558-1565.
[10]W.S. Hummers, R.E. Offeman "Preparation of Graphitic Oxide" J. Am. Chem. Soc.; 1958, 80: 1339-1339.
[11]M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito. "Perspectives on carbon nanotubes and graphene Raman spectroscopy" Nano Letters; 2010, 10: 751-758.
[12]Z. Li, C. Lu, Z. Xia, Y. Zhou, Z. Luo "X-ray diffraction patterns of graphite and turbostratic carbon" Carbon; 2007, 45: 1686-1695.
[13]X-ray Diffraction — II. Institute of Physics http://physik2.uni-goettingen.de/research/2_hofs/methods/XRD.
[14]Technische Universität München, Prof. Dr. Wilhelm Auwärter, Prof. Dr. Johannes Barth/ Physik-Department E20, https://www.e20.ph.tum.de/techniken/photoelectron-spectroscopy/
[15]C. Wagner, W. Riggs, L. Davis, J. Moulder, G. Muilenberg "Handbook of X-ray photoelectron spectroscopy" physical electronics division. Perkin-Elmer Corporation, Eden Prairie, Minnesota. 1979; 68.
[16]J.M. Bonard, K.A. Dean, B.F. Coll, C. Klinke "Field emission of individual carbon nanotubes in the scanning electron microscope" Physical review letters; 2002, 89: 197602.
[17]R.H. Baney, M. Itoh, A. Sakakibara, T. Suzuki "Silsesquioxanes" Chem. Rev.; 1995, 95: 1409.
[18]L.H. Lee, W.C. Chen and W.C. Liu, "Structural Control of Oligomeric Methyl Silsesquioxane precursors and Their Thin-Film Properties" J. Polym. Sci.Part A; 2002, 40: 1560-1571.
[19]B.C. Simionescu, I.E. Bordianu, N. Tudorachi, C.Cotofana, L. Ursu, A. Coroaba, M. Drobota and M. Olaru, "Effects of chemical structure and chain end groups on the thermal stability of new silsequioxanes with methacrylate and/or vinyl units" Mater. Chem. & Phy.; 2013, 139: 719-733.
[20]E.S. Park, H.W. Ro, C.V. Nguyen, R.L. Jaffe and D.Y. Yoon, "Infrared Spectroscopy Study of Microstructures of Poly(silsesquioxane)s" Chem. Mater.; 2008, 20: 1548-1554.
[21]C.L. Chiang and C.C.M. Ma, "Synthesis, characterization and thermal properties of novel epoxy containing silicone and phosphorus nanocomposites by sol-gel method" Eur. Polymer J.; 2002, 38: 2219-2224.
[22]S. Bourbigot, T. Turf, S. Bellayer, S. Duquesne, " Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane" Polymer Degradation and Stability; 2009, 94: 1230-1237.
[23]H. Xu, F. Qiu, Y. Wang, W. Wu, D. Yang, Q. Guo, "UV-curable waterborne polyurethane-acrylate: preparation, characterization and properties" Progress in Organic Coatings; 2012, 73: 47–53.
[24]D. Chen, S. Yi, W. Wu, Y. Zhong, J. Liao, C. Huang, W. Shi, "Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using Vinyl-POSS derivatives as cross linking agents" Polymer; 2010, 51: 3867-3878.
[25]D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff, "The chemistry of graphene oxide" Chem. Soc. Rev.; 2010, 39: 228-240.
[26]Y.H. Xue, Y.Liu, F. Lu, J. Qu, H. Chen and L. Dai, "Functionalization of Graphene Oxide with Polyhedral Oligomeric Silsesquioxane (POSS) for Multifunctional Application" J. Phys. Chem. Let.; 2012, 3: 1607-1612.
[27]L.B. Zhang, J.Q. Wang, H.G. Wang, Y. Xu, Z.F. Wang, Z.P. LI, Y.J. Mi and S.R. Yang, "Preparation, mechanical and thermal properties of functionalized graphene/ polyimide nanocomposites" Composites: Part A; 2012, 43: 1537-1545.
[28]L. Cao, Q. Sun, H. Wang, X. Zhang and H. Shi, "Enhanced stress transfer and thermal properties composites with covalent functionalized reduced graphen oxide" Composites: Part A; 2015, 68: 140-148.
[29]D. Chen, H. Zhu and T. Liu, "In Situ Thermal Preparation of Polyimide Nanocomposite Films Containing Functionalized Graphene Sheets" Appl. Mater. Interfaces; 2010, 2: 3702-3708.
[30]S. Norouzi, M. Mohseni and H. Yahyaei, "Preparation and characterization of an acrylic acid modified polyhedral oligomeric silsesquioxane and investigating its effect in a UV curable coating" progress in Organic Coating; 2016, 99: 1-10.
[31]A.J. Waddon and E.B. Coughlin, "Crystal Structure of Polyhedral Oligomeric Silsequioxane (POSS) Nano-materials: A Study by X-ray Diffraction and Electron Microscopy" Chem. Mater.; 2003, 15: 4555-4561.
[32]D.J. Liaw, B.Y. Liaw, Y.S. Chen, "Synthesis and properties of new soluble poly(amide-imide)s from 3,3′,5,5′-tetramethyl-2,2-bis[4- (4-trimellitimidophenoxy)phenyl]propane with various diamines" Polymer; 1999, 40(14): 4041–4047.
[33]D.J. Liaw, B.Y. Liaw, M.Y. Tsai, "Synthesis and properties of polyimides derived from 2,2-bis[4-[2-(4-aminophenoxy)ethoxy]phenyl] propane" Eur. Polym. J.; 1997, 33(7): 997–1004.
[34]K.F. Lei, Y. Chen, H.P. Zhang , X.J. Li, P. Yao, Y. Ma, and Q.Y. Zhang, "Space Survivable Polyimides with Excellent Optical Transparency and Self-Healing Properties Derived from Hyperbranched Polysiloxane" Appl. Mater. Interfaces; 2013, 5: 10207-10220.
[35]W.Q. Chen, Q.T. Li, P.H. Li, Q.Y. Zhang, Z.S. Xu, P.K. Chu, X.B. Wang and C.F. Yi, "In Situ random co-polycondensation for preparing of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide" J. Mater. Sci.; 2015, 50: 3860-3874.
[36]X. Lei, Y. Chen, M. Qiao, L. Tian and Q. Zhang, "Hyperbranched polysiloxane (HBPSi)-based polyimide films with ultralow dielectric permittivity, desirable mechanical and thermal properties" J. Mater. Chem. C.; 2016, 4: 2134-2146.
[37]M. Kakimoto, R. Akiyama, Y. S. Negi, and Y. Imai, "Synthesis and characterization of aromatic polyimide and polyamide-imide from 2,5-bis(4-isocyanatophenyl)-3,4-diphenylthiophene and aromatic tetra- and tricarboxylic acids"J. Polym. Sci., Part A: Polym. Chem. Ed.; 1988, (26): 99.
[38]M. Son, Y. Ha, M.C. Choi, T. Lee and D. Han, "Microstructure and properties of polyamideimide/silica hybrids compatibilized with 3-aminopropyltriethoxysilane" Eur. Polymer J.; 2008, 44: 2236 -2243.
[39]W. Yu, J. Fu, X. Dong, L. Chen and L. Shi, "A grapheme hybride material functionalized with POSS: Synthesis and applications in low-dielectric epoxy composites" Conposities Science and Technology; 2014, 92: 112-119.
[40]T. Huang, R. Lu, C. Su, H. Wang, Z. Guo, Pei Liu, Z. Huang, H. Chen and T. Li, "Chemically Modified Graphene/polyimide Composite Films Based on Utilization of Covalent Bonding and Oriented Distribution" Appl. Mater. Interfaces; 2012, 4: 2699-2708.
[1]W.H. Liao, S.Y. Yang, S.T. Hsiao, Y.S. Wang, S.M. Li, C.C.M. Ma, H.W. Tien, S.J. Zeng, "Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites" ACS applied materials & interfaces; 2014, 6(18): 15802-15812.
[2]D. Cai, M. Song, "Recent advance in functionalized graphene/polymer nanocomposites" Journal of Materials Chemistry; 2010, 20(37): 7906-7915.
[3]Y. Xue, Y. Liu, F. Lu, J. Qu, H. Chen, L. Dai, "Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications" The journal of physical chemistry letters; 2012, 3(12): 1607-1612.
[4]X. Wang, Y. Dai, W. Wang, M. Ren, B. Li, C. Fan, X. Liu, "Fluorographene with high fluorine/carbon ratio: a nanofiller for preparing low-κ polyimide hybrid films" ACS applied materials & interfaces; 2014, 6(18): 16182-16188.
[5]R.P. Pandey, V.K. Shahi, "Sulphonated imidized graphene oxide (SIGO) based polymer electrolyte membrane for improved water retention, stability and proton conductivity" Journal of Power Sources; 2015, 299: 104-113.
[6]J. Choi, R. Tamaki, S.G. Kim, R.M. Laine, "Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes" Chemistry of materials; 2003, 15(17): 3365-3375.
[7]Y.J. Lee, J.M. Huang, S.W. Kuo, F.C. Chang, "Low-dielectric, nanoporous polyimide films prepared from PEO–POSS nanoparticles" Polymer; 2005, 46(23): 10056-10065.
[8]S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, "Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets" Carbon; 2006, 44(15): 3342-3347.
[9]D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, "The chemistry of graphene oxide" Chemical Society Reviews; 2010, 39(1): 228-240.
[10]S.Y. Yang, W.N. Lin, Y.L. Huang, H.W. Tien, J.Y. Wang, C.C.M. Ma, S.M. Li, Y.S. Wang, "Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites" Carbon; 2011, 49(3): 793-803.
[11]C. Min, P. Nie, H.-J. Song, Z. Zhang, K. Zhao, "Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition" Tribology International; 2014, 80: 131-140.
[12]C. Wang, Y. Lan, W. Yu, X. Li, Y. Qian, H. Liu, "Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties" Applied Surface Science; 2016, 362: 11-19.
[13]X. Zhang, J. Liu, S. Yang, "Synthesis and characterization of flexible and high-temperature resistant polyimide aerogel with ultra-low dielectric constant" Express Polymer Letters; 2016, 10(10).
[14]T. Huang, Y. Xin, T. Li, S. Nutt, C. Su, H. Chen, P. Liu, Z. Lai, "Modified graphene/polyimide nanocomposites: reinforcing and tribological effects" ACS applied materials & interfaces; 2013, 5(11): 4878-4891.
[15]H.J. Ni, J.G. Liu, Z.H. Wang, S.Y. Yang, "A review on colorless and optically transparent polyimide films: Chemistry process and engineering applications" Journal of Industrial and Engineering Chemistry; 2015, 28: 16-27.
[16]M. Ghosh, Polyimides: fundamentals and applications, CRC Press 1996.
[17]G. Bower, L. Frost, "Aromatic polyimides" Journal of Polymer Science Part A: Polymer Chemistry; 1963, 1(10): 3135-3150.
[18]K. Kurita, H. Itoh, Y. Iwakura, "Polyimides derived from bismethylolimides. I. Polyamide–imides from bismethylolimides and dinitriles" Journal of Polymer Science Part A: Polymer Chemistry; 1978, 16(4): 779-789.
[19]W.S. Hummers, R.E. Offeman "Preparation of Graphitic Oxide" J. Am. Chem. Soc.; 1958, 80: 1339-1339.
[20]K.F. Lei, Y. Chen, H.P. Zhang , X.J. Li, P. Yao, Y. Ma, and Q.Y. Zhang, "Space Survivable Polyimides with Excellent Optical Transparency and Self-Healing Properties Derived from Hyperbranched Polysiloxane" Appl. Mater. Interfaces; 2013, 5: 10207-10220.
[21]W.Q. Chen, Q.T. Li, P.H. Li, Q.Y. Zhang, Z.S. Xu, P.K. Chu, X.B. Wang and C.F. Yi, "In Situ random co-polycondensation for preparing of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide" J. Mater. Sci.; 2015, 50: 3860-3874.
[22]W.Q. Chen, Q.T. Li, P.H. Li, Q.Y. Zhang, Z.S. Xu, P.K. Chu, X.B. Wang, C.F. Yi, "In situ random co-polycondensation for preparation of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide" Journal of Materials Science; 2015, 50(11): 3860-3874.
[23]M.A. Kakimoto, R. Akiyama, Y.S. Negi, Y. Imai, "Synthesis and characterization of aromatic polyimide and polyamide‐imide from 2, 5‐bis (4‐isocyanatophenyl)‐3, 4‐diphenylthiophene and aromatic tetra‐and tricarboxylic acids" Journal of Polymer Science Part A: Polymer Chemistry; 1988, 26(1): 99-105.
[24]M. Son, Y. Ha, M.C. Choi, T. Lee, D. Han, S. Han, C.S. Ha, "Microstructure and properties of polyamideimide/silica hybrids compatibilized with 3-aminopropyltriethoxysilane" European Polymer Journal; 2008, 44(7): 2236-2243.
[25]L.H. Lee, W.C. Chen, W.C. Liu, "Structural control of oligomeric methyl silsesquioxane precursors and their thin‐film properties" Journal of Polymer Science Part A: Polymer Chemistry; 202, 40: 1560-1571.
[26]B.C. Simionescu, I.-E. Bordianu, N. Tudorachi, C. Cotofana, L. Ursu, A. Coroaba, M. Drobota, M. Olaru, "Effects of chemical structure and chain end groups on the thermal stability of new silsesquioxanes with methacrylate and/or vinyl units" Materials Chemistry and Physics; 2013, 139: 719-733.
[27]E. Park, H. Ro, C. Nguyen, R. Jaffe, D. Yoon, "Infrared spectroscopy study of microstructures of poly(silsesquioxane)s" Chemistry of Materials; 2008, 20: 1548-1554.
[28]J. Lim, H. Yeo, M. Goh, B.C. Ku, S.G. Kim, H.S. Lee, B. Park, N.H. You, "Grafting of polyimide onto chemically-functionalized graphene nanosheets for mechanically-strong barrier membranes" Chemistry of Materials; 2015, 27(6): 2040-2047.
[29]L. He, P. Zhang, H. Chen, J. Sun, J. Wang, C. Qin, L. Dai "Preparation of polyimide/siloxane-functionalized graphene oxide composite films with high mechanical properties and thermal stability via in situ polymerization" Polym. Int.; 2016, 65: 84-92.
[30] M. Koo, J.S. Bae, S.E. Shim, D. Kim, D.G. Nam, J.W. Lee, G.W. Lee, J.H. Yeum and W. Oh, "Thermo-dependent characteristics of polyimide-graphene composites" Colloid Polym Sci.; 2011, 289: 1503-1509, 2011.
[31]I.S Tseng, J.C. Chang, S.L. Huang and M.H. Tsai, "Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposites film by addition of functionalized graphene oxide" Polym Int.; 2013, 62: 827-835.
[32]Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, "Graphene and Graphene oxide: Synthesis, Properties, and Application" Adv. Mater.; 2010, 22: 3906-3924.
[33]O.K. Park, J.Y. Hwang, M. Goh, J.H. Lee, B.C. Ku and N.H. You, "Mechanically Strong and Multifuctional Polyimide Nanocomposites Using Aminophenyl Functionalized Graphene Nanosheets" Macromolecules,; 2013, 46: 3505-3511.
[34]Y. Zhang, S. Xiao, Q. Wang, S. Liu, Z. Qiao, Z. Chi, J. Xu and J. Economy, "Thermally conductive, insulated polyimide nanocomposites by AlO(OH)- coated MWCNTs" J. Mater. Chem.; 2011, 21: 14563-14568.
[35]https://zh.wikipedia.org/wiki/
[1]V. Fthenakis, H.C. Kim, "Land use and electricity generation: A life-cycle analysis" Renewable and Sustainable Energy Reviews; 2009, 13: 1465-1474.
[2]H.D. Abruña, Y. Kiya, J.C. Henderson, "Batteries and electrochemical capacitors" Phys. Today; 2008, 61: 43-47.
[3]B. Kang, G. Ceder, "Battery materials for ultrafast charging and discharging" Nature; 2009, 458: 190.
[4]C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, "Relation between the ion size and pore size for an electric double-layer capacitor" Journal of the American Chemical Society; 2008, 130: 2730-2731.
[5]Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, "Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes" ACS nano; 2012, 7: 174-182.
[6]S.M. Li, Y.S. Wang, S.Y. Yang, C.H. Liu, K.H. Chang, H.W. Tien, N.T. Wen, C.C.M. Ma, C.C. Hu, "Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene–carbon nanotube structure for ultrahigh-performance electrochemical capacitors" Journal of power sources; 2013, 225: 347-355.
[7]H. Zhong, F. Xu, Z. Li, R. Fu, D. Wu, "High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes" Nanoscale; 2013, 5: 4678-4682.
[8]S.C. Lin, Y.T. Lu, Y.A. Chien, J.A. Wang, T.H. You, Y.S. Wang, C.W. Lin, C.C.M. Ma, C.C. Hu, "Asymmetric supercapacitors based on functional electrospun carbon nanofiber/manganese oxide electrodes with high power density and energy density" Journal of Power Sources; 2017, 362: 258-269.
[9]A. Pandolfo, A. Hollenkamp, "Carbon properties and their role in supercapacitors" Journal of power sources; 2006, 157: 11-27.
[10]Y.W. Chi, C.C. Hu,. H.H. Shen, K.P. Huang, "New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping" Nano Lett.; 2016, 16: 5719−5727.
[11]B. Mendoza-Sa´nchez, B. Rasche, V. Nicolosi, P.S. Grant, " Scaleable ultra-thin and high power density graphene electrochemical capacitor electrodes manufactured by aqueous exfoliation and spray deposition" Cabon; 2013, 52: 337−346.
[12]J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A.L.M. Reddy, J. Yu, R. Vajtai, P.M. Ajayan, "Ultrathin Planar Graphene Supercapacitors" Nano Lett.; 2011, 11: 1423–1427.
[13]T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff and K.S. Suh, "High-Performance Supercapacitors Basedon Poly(ionic liquid)-Modified Graphene Electrodes" ACS Nano; 2010, 5: 436-442 .
[14]Q. Xiao and X. Zhou, "The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor" Electrochimica Acta; 2003, 48: 575-580
[15]D. Qu and H. Shi, "Studies of activated carbons used in double-layer capacitors" J. Power Sources; 1998, 74: 99-107.
[16]D. A. Ghosh, E.J. Ra, M. Jin, H.K. Jeong, T. H. Kim, C. Biswas, and Y.H. Lee, "High Pseudocapacitance from Ultrathin V 2 O 5 Films Electrodeposited on Self-Standing Carbon-Nano fiber Paper" Adv. Funct. Mater.; 2011, 21: 2541-2547.
[17]X. Wang, X. Fan, G. Li, M. Li, X. Xiao, A. Yu, Z. Chen, " Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors " Cabon; 2015, 93: 258−265.
[18]D. Liu, G. Chenga, H. Zhaoa, C. Zenga, D. Qua, L. Xiaoa , H. Tang, Z. Dengb, Y. Lib, B.L. Su, "Self-assembly of polyhedral oligosilsesquioxane (POSS) into hierarchically ordered mesoporous carbons with uniform microporosity and nitrogen-doping for high performance supercapacitors" Nano Energy; 2016, 22: 255–268.
[19]C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, "Highly flexible and all-solid-state paperlike polymer supercapacitors" Nano letters; 2010, 10: 4025-4031.
[20]P. Simon, Y. Gogotsi, "Materials for electrochemical capacitors, Nanoscience And Technology" A Collection of Reviews from Nature Journals, World Scientific; 2010, pp. 320-329.
[21]W. Wei, X. Cui, W. Chen, D.G. Ivey, "Manganese oxide-based materials as electrochemical supercapacitor electrodes" Chemical society reviews; 2011, 40: 1697-1721.
[22]C.L. Liu, K.H. Chang, C.C. Hu, W.C. Wen, "Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors" Journal of Power Sources; 2012, 217: 184-192.
[23]W. Ma, S. Chen, S. Yang, W. Chen, W. Weng, Y. Cheng, M. Zhu, "Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density" Carbon; 2017, 113: 151-158.
[24]T.P. Nguyen, W.C. Chang, Y.C. Lai, T.C. Hsiao, D.H. Tsai, "Quantitative characterization of colloidal assembly of graphene oxide-silver nanoparticle hybrids using aerosol differential mobility-coupled mass analyses" Analytical and bioanalytical chemistry; 2017, 409: 5933-5941.
[25]W.C. Chang, J.T. Tai, H.F. Wang, R.M. Ho, T.C. Hsiao, D.H. Tsai, "Surface PEgylation of silver nanoparticles: kinetics of simultaneous surface dissolution and molecular desorption" Langmuir; 2016, 32: 9807-9815.
[26]T.Y. Tsai, H.L. Wang, Y.C. Chen, W.C. Chang, J.W. Chang, S.Y. Lu, D.H. Tsai, "Noble metal-titania hybrid nanoparticle clusters and the interaction to proteins for photo-catalysis in aqueous environments" Journal of colloid and interface science; 2017, 490: 802-811.
[27]Y. Yoon, K. Lee, C. Baik, H. Yoo, M. Min, Y. Park, S.M. Lee, H. Lee, "Anti‐Solvent Derived Non‐Stacked Reduced Graphene Oxide for High Performance Supercapacitors" Advanced materials; 2013, 25: 4437-4444.
[28]C. Li, S. Wang, G. Zhang, Z. Du, G. Wang, J. Yang, X. Qin, G. Shao, "Three-dimensional crisscross porous manganese oxide/carbon composite networks for high performance supercapacitor electrodes" Electrochimica Acta; 2015, 161: 32-39.
[29]M. Toupin, T. Brousse, D. Bélanger, "Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor" Chemistry of Materials; 2004, 16: 3184-3190.
[30]G. An, P. Yu, M. Xiao, Z. Liu, Z. Miao, K. Ding, L. Mao, "Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors" Nanotechnology; 2008, 19: 275709.
[31]K. Anilkumar, M. Manoj, B. Jinisha, V. Pradeep, S. Jayalekshmi, "Mn3O4/reduced graphene oxide nanocomposite electrodes with tailored morphology for high power supercapacitor applications" Electrochimica Acta; 2017, 236: 424-433.
[32]W.S. Hummers, R.E. Offeman, "Preparation of Graphitic Oxide" J. Am. Chem. Soc.; 1958, 80: 1339-1339.
[33]M. Majkumar, C.T. Hsu, T.H. Wu, M.G. Chen, C.C. Hu, " Advanced materials for aqueous supercapacitors in the asymmetric design" Prog. Nat. Sci. Mater. Int.; 2015, 25: 527-544.
[34]L.H. Lee, W.C. Chen and W.C. Liu, "Structural Control of Oligomeric Methyl Silsesquioxane precursors and Their Thin-Film Properties" J. Polym. Sci.Part A; 2002, 40: 1560-1571.
[35]B.C. Simionescu, I.E. Bordianu, N. Tudorachi, C.Cotofana, L. Ursu, A. Coroaba, M. Drobota and M. Olaru, "Effects of chemical structure and chain end groups on the thermal stability of new silsequioxanes with methacrylate and/or vinyl units" Mater. Chem. & Phy.; 2013, 139: 719-733.
[36]E.S. Park, H.W. Ro, C.V. Nguyen, R.L. Jaffe and D.Y. Yoon, "Infrared Spectroscopy Study of Microstructures of Poly(silsesquioxane)s" Chem. Mater.; 2008, 20: 1548-1554.
[37]Y.H. Xue, Y.Liu, F. Lu, J. Qu, H. Chen and L. Dai, "Functionalization of Graphene Oxide with Polyhedral Oligomeric Silsesquioxane (POSS) for Multifunctional Application" J. Phys. Chem. Let.; 2012, 3: 1607-1612.
[38]L.B. Zhang, J.Q. Wang, H.G. Wang, Y. Xu, Z.F. Wang, Z.P. LI, Y.J. Mi and S.R. Yang, "Preparation, mechanical and thermal properties of functionalized graphene/ polyimide nanocomposites" Composites: Part A; 2012, 43: 1537-1545.
[39]L. Cao, Q. Sun, H. Wang, X. Zhang and H. Shi, "Enhanced stress transfer and thermal properties composites with covalent functionalized reduced graphen oxide" Composites: Part A; 2015, 68: 140-148.
[40]W.H. Liao, S.Y. Yang, S.T. Hsiao, Y.S. Wang, S.M. Li, C.C.M. Ma, H.W. Tien, S.J. Zeng, "Effect of octa (aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites" ACS applied materials & interfaces; 2014, 6: 15802-15812.
[41]H.W. Tien, S.T. Hsiao, W.H. Liao, Y.H. Yu, F.C. Lin, Y.S. Wang, S.M. Li, C.C.M. Ma, "Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive" Carbon; 2013, 58: 198-207.
[42]X. Gu, J. Yue, L. Chen, S. Liu, H. Xu, J. Yang, Y. Qian, X. Zhao, "Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes" Journal of Materials Chemistry A; 2015, 3: 1037-1041.
[43]Y. Xiao, X. Wang, W. Wang, D. Zhao, M. Cao, "Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode" ACS applied materials & interfaces; 2014, 6: 2051-2058.
[44]M. Oku, K. Hirokawa, S. Ikeda, "X-ray photoelectron spectroscopy of manganese—oxygen systems" Journal of Electron Spectroscopy and Related Phenomena; 1975, 7: 465-473.
[45]V. Di Castro, G. Polzonetti, "XPS study of MnO oxidation" Journal of Electron Spectroscopy and Related Phenomena; 1989, 48: 117-123.
[46]S. Ardizzone, C. Bianchi, D. Tirelli, "Mn3O4 and γ-MnOOH powders, preparation, phase composition and XPS characterisation" Colloids and Surfaces A: Physicochemical and Engineering Aspects; 1998, 134: 305-312.
[47]A.M.E. Raj, S.G. Victoria, V.B. Jothy, C. Ravidhas, J. Wollschläger, M. Suendorf, M. Neumann, M. Jayachandran, C. Sanjeeviraja, "XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique" Applied Surface Science; 2010, 256: 2920-2926.
[48]K. Zhang, P. Han, L. Gu, L. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Dong, Z. Zhang, J. Yao, H. Xu, G. Cui, L. Chen "Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries" ACS Appl. Mater. Interfaces; 2012, 4, 658-664.
[49]L. Wang, Y. Li, Z. Han, L. Chen, B. Qian, X. Jiang, J. Pinto, G. Yang, "Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene" J. Mater. Chem. A; 2013, 1: 8385-8397.
[50]F. Xiao, Y. Xu, "Pulse Electrodeposition of Manganese Oxide for High-Rate Capability Supercapacitors" Int. J. Electrochem. Sci.; 2012, 7: 7440-7450.
[51]S.C. Lin, Y.T. Lu, Y.A. Chien, J.A. Wang, P.Y. Chen, C.C.M. Ma, C.C. Hu, "Asymmetric supercapacitors based on electrospun carbon nanofiber/sodium-pre-intercalated manganese oxide electrodes with high power and energy density" Journal of Power Sources; 2018, 393: 1-10.
[52]H. Xia, Y. Wang, J. Lin, L. Lu, "Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors" Nanoscale Research Letters; 2012, 7: 33.
[53]M. Zaki, M. Hasan, L. Pasupulety, K. Kumari, Thermochemistry of manganese oxides in reactive gas atmospheres: probing redox compositions in the decomposition course MnO2→ MnO, Thermochimica Acta, 1997, 303: 171-181
[54]H. Qiu, T.A. Bechtold, L.T. Lee, W.Y. Lee, "Granules of graphene oxide by spray drying " US20140205841 A1.