簡易檢索 / 詳目顯示

研究生: 林秉逸
Lin, Ping-Yi
論文名稱: 非完美通道估測情境下之多細胞巨量MIMO-NOMA下行系統的強健式預編碼與解碼技術
Robust Precoding and Decoding for Multicell Downlink Massive MIMO-NOMA Systems with Imperfect Channel Estimation
指導教授: 王晉良
Wang, Chin-Liang
口試委員: 陳永芳
Chen, Yung-Fang
古聖如
Ku, Sheng-Ju
黃昱智
Huang, Yu-Chih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 36
中文關鍵詞: 非正交多重接取多輸入多輸出非完美通道多細胞預編碼解碼
外文關鍵詞: NOMA, MIMO, Imperfect Channel, Multicell, Precoding, Decoding
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非正交多重接取(non-orthogonal multiple access;NOMA)為一具有潛力的技術,可以處理下一代無線通訊系統大量數據增長的問題。在本論文中,我們考量一個在非完美通道估測情境下運作的多細胞巨量多輸入多輸出(MIMO) NOMA下行系統,其中每個細胞包含一個基地台和多個使用者群組,每個群組由兩個使用者組成,且每個使用者會遭受群組間干擾和細胞間干擾;為了克服這些干擾問題,我們提出強健式預編碼與解碼技術。首先,基於方塊對角化技術設計預編碼器,將多群組MIMO-NOMA通道分解成多個平行的單群組MIMO-NOMA通道,以消除群組間干擾。然後,建構一聯合預編碼與解碼的最佳化問題,以最小化所有使用者端之NOMA訊號的解碼均方誤差(僅考慮雜訊)以及對應的細胞間洩漏訊號總和,進而消除細胞間干擾;此一最佳化問題之解可經由迭代方式不斷更新,以提升效能。接著,推導出一具有低複雜度的使用者功率分配閉合解,以最大化最小的使用者近似容量。最後,基於最小化均方誤差準則設計每一群組中的使用者解碼器,以分離兩個使用者的訊號。電腦模擬結果顯示,結合上述方法之設計不僅可達到良好的平均位元錯誤率,而且可提供NOMA使用者間的位元錯誤率公平性;另外,在正規化通道均方誤差小於0.02的情況下,位元錯誤率的變化並不明顯,這也驗證所提出之設計在非完美通道估測情境下具有強健效能。


    Non-orthogonal multiple access (NOMA) is a promising technique that can deal with the massive data growth issues for next-generation wireless communication systems. In this thesis, we consider a multicell downlink massive multiple-input multiple-output (MIMO) NOMA system with imperfect channel estimation. Each cell consists of one base station and multiple clusters, where each cluster contains two users and each user suffers from both intercluster interference and intercell interference. To overcome the interference problems, some robust precoding and decoding techniques are proposed for the system. First, block-diagonalization-based precoders are used to decompose a multiple-cluster MIMO-NOMA channel into multiple parallel single-cluster MIMO-NOMA channels for removing the intercluster interference. Then, a joint precoding and decoding optimization problem is formulated in order to minimize the sum of mean-squared decoding errors (due to noise only) of the desired NOMA signals and the corresponding leakages from one cell to the others for removing the intercell interference. The solution to the optimization problem can be updated iteratively for performance improvement. Subsequently, a low-complexity closed-form solution is derived for power allocation between both users of each cluster to maximize the minimum of an approximated user capacity. Finally, a set of user signal decoders are designed based on the minimum mean-squared error (MSE) criterion to separate the two users’ signals for each cluster. Computer simulation results demonstrate that the proposed design with all the above methods not only achieves excellent performance in terms of the average bit error rate (BER) but also offers BER fairness among NOMA users. Moreover, the BER variations are not significant for normalized channel MSEs smaller than 0.02, and this supports that the proposed design has robust performance under imperfect channel estimation.

    Abstract i Contents ii List of Figures iii List of Tables iv I.Introduction........................................1 II.System Model.......................................5 III.Proposed Methods..................................10 A.Intercluster Interference Cancellation..............10 B.Imperfect Successive Interference Cancellation......11 C.Power Allocation....................................13 D.Precoding and Decoding Based on LSMSE Minimization..15 E.User Signal Decoding................................18 F.Complexity Analysis of the Proposed Design..........21 IV.Simulation Results.................................24 V.Conclusion..........................................32 References............................................33

    [1] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Sliva, F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201–1221, Jun. 2017.
    [2] Q. C. Li, H. Niu, A. T. Papathanassiou, and G. Wu, “5G network capacity: Key elements and technologies,” IEEE Veh. Technol. Mag., vol. 9, no. 1, pp. 71–78, Mar. 2014.
    [3] S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges,” IEEE Commun. Surv. Tuts., vol. 19, no. 2, pp. 721–742, Oct. 2017.
    [4] Z. Wu, K. Lu, C. Jiang, and X. Shao, “Comprehensive study and comparison on 5G NOMA schemes,” IEEE Access, vol. 6, pp. 18511–18519, Mar. 2018.
    [5] Y. Liu, G. Pan, H. Zhang, and M. Song, “On the capacity comparison between MIMO-NOMA and MIMO-OMA,” IEEE Access, vol. 4, pp. 2123–2129, May 2016.
    [6] M. Zeng, A. Yadav, O. A. Dobre, G. I. Tsiropoulos, and H. V. Poor, “On the sum rate of MIMO-NOMA and MIMO-OMA systems,” IEEE Commun. Lett., vol. 6, no. 4, pp. 534–537, Aug. 2017.
    [7] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Pers. Commun., vol. 6, pp. 311–335, Mar. 1998.
    [8] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
    [9] T. L. Marzetta, “Massive MIMO: An introduction,” Bell Labs Tech. J., vol. 20, pp. 11–22, Mar. 2015.
    [10] Q. Sun, S. Han, C.-L. I, and Z. Pan, “On the ergodic capacity of MIMO NOMA systems,” IEEE Commun. Lett., vol. 4, no. 4, pp. 405–408, Aug. 2015.
    [11] M. Zeng, A. Yadav, O. A. Dobre, G. I. Tsiropoulos, and H. V. Poor, “Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2413–2424, Oct. 2017.
    [12] C.-L. Wang, J.-Y. Chen, S.-H. Lam, and P. Xiao, “Joint clustering and precoding for a downlink non-orthogonal multiple access system with multiple antennas,” in Proc. IEEE Veh. Technol. Conf. (VTC-Fall), Montreal, Quebec, Canada, Sep. 2016, pp. 1–5.
    [13] Z. Ding and H. V. Poor, “Design of massive-MIMO-NOMA with limited feedback,” IEEE Signal Process. Lett., vol. 23, no. 5, pp. 629–633, May 2016.
    [14] J.-J. Zheng, “Joint power allocation, precoding, and decoding for downlink massive MIMO non-orthogonal multiple access systems,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2016.
    [15] H. Sung, K. J. Lee, S. H. Park, and I. Lee, “An iterative precoder optimization method for K-user interference channel systems,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Hawaii, USA, Nov. 2009, pp. 1–5.
    [16] F. Sun and E. de Carvalho, “A leakage-based MMSE beamforming design for a MIMO interference channel,” IEEE Signal Process. Lett., vol. 19, no. 6, pp. 368–371, Jun. 2012.
    [17] J.-C. Gu, “Precoding and decoding for downlink massive-MIMO non-orthogonal multiple access systems in two-cell environments,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Dec. 2017.
    [18] W. Shin, M. Vaezi, B. Lee, D. J. Love, J. Lee, and H. V. Poor, “Coordinated beamforming for multi-cell MIMO-NOMA,” IEEE Commun. Lett., vol. 21, no. 1, pp. 84–87, Jan. 2017.
    [19] M. J. Rahman and L. Lampe, “Robust MSE-based transceiver optimization for downlink cellular interference alignment,” in Proc. IEEE Int. Conf. Commun. (ICC), London, UK, Sep. 2015, pp. 4624–4629.
    [20] F. Alavi, K. Cumanan, Z. Ding, and A. G. Burr, “Robust beamforming techniques for non-orthogonal multiple access systems with bounded channel uncertainties,” IEEE Commun. Lett., vol. 21, no. 9, pp. 2033–2036, Sep. 2017.
    [21] S.-Y. Huang, “Joint power allocation, precoding, and decoding for downlink massive MIMO-NOMA systems with imperfect channel estimation,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Dec. 2021.
    [22] W. A. Al-Hussaibi and F. H. Ali, “A closed-form approximation of correlated multiuser MIMO ergodic capacity with antenna selection and imperfect channel estimation,” IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 5515–5519, Jun. 2018.
    [23] B. Nosrat-Makouei, J. G. Andrews, and R. W. Heath, “MIMO interference alignment over correlated channels with imperfect CSI,” IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2783–2794, Jun. 2011.
    [24] T. Too, E. Yoon, and A. Goldsmith, “MIMO capacity with channel uncertainty: Does feedback help?,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Dallas, Texas, USA, Nov. 2004, vol. 1, pp. 96–100.
    [25] A. Adhikary, J. Nam, J. Ahn, and G. Caire, “Joint spatial division and multiplexing—The large-scale array regime,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6441–6463, Oct. 2013.
    [26] C.-L. Wang, J.-Y. Chen, and Y.-J. Chen, “Power allocation for a downlink non-orthogonal multiple access system,” IEEE Wireless Commun. Lett., vol. 5, no. 5, pp. 532–535, Oct. 2016.
    [27] S. Roy and P. Fortier, “Maximal-ratio combining architectures and performance with channel estimation based on a training sequence,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1154–1164, Jul. 2004.
    [28] A. S. de Sena, F. R. M. Lima, D. B. da Costa, Z. Ding, P. H. J. Nardelli, U. S. Dias, and C. B. Papadias, “Massive MIMO-NOMA networks with imperfect SIC: Design and fairness enhancement,” IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 6100–6115, Sep. 2020.
    [29] Z. Yang, Z. Ding, P. Fan, and G. K. Karagiannidis, “On the performance of non-orthogonal multiple access systems with partial channel information,” IEEE Trans. Commun., vol. 64, no. 2, pp. 654–667, Feb. 2016.
    [30] C.-L. Wang, Y.-C. Wang, and P. Xiao, “Power allocation based on SINR balancing for NOMA systems with imperfect channel estimation,” in Proc. IEEE Int. Conf. Signal Process. Commun. Syst. (ICSPCS), Gold Coast, Australia, Dec. 2019, pp. 1–6.
    [31] K. B. Petersen and M. S. Pedersen, The Matrix Cookbook. Lyngby, Denmark: Tech. Univ. Denmark, Nov. 2012. [Online]. Available:http://localhost/pubdb/p.php?3274
    [32] 5G; Study on Channel Model for Frequencies from 0.5 to 100 GHz, Tech. Rep., 3GPP TR 38.901 V15.0.0, Jul. 2018.
    [33] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD, USA: Johns Hopkins Univ. Press, 1996.

    QR CODE