研究生: |
湯又寧 Tang, Yu-Ning |
---|---|
論文名稱: |
利用標籤匹配增加路由轉發資料使用率之方法 Exploiting tag matching approach to enhance the utilization of forwarding data in AODV protocol |
指導教授: | 張適宇 |
口試委員: |
翁詠祿
Ueng, Yeong-Luh 黃啟祐 Huang, Chi-Yo |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 隨意行動網路 、社交網路 、無線路由協定 、標籤/標記匹配 |
外文關鍵詞: | Ad hoc network, Social network, Wireless routing protocol, tag matching |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
資料交換與共享是社交網路活躍存在的重要原因之一,將此概念應用於無線隨意行動網路,適當的訊息分享幫助需求者減少通訊開銷。因此,社交(社群)路由是一個新的應用方向。然而,我們觀察到,目前多數的社交網路是以中心化的架構實現。中央節點總是搜集其他節點的環境資訊,主動預測其路由路徑之訊息使用率。另外,我們也發現在社交路由上,較少被動式路由的相關協定被研究,因為其路由型態並不是主動式的。實際上,這些被動式路由卻有許多優良特點,包括低耗能和節省頻寬,使得它們近年來越來越受歡迎。
此篇論文裡,我們提出了標記(tag)預測路由資訊的概念,藉由預先配置好的標記列表來作為,中繼節點可以存取利用轉發之資料。我們以被動路由協定AODV來進行模擬,藉此評估效能。我們期望保有被動式路由的優點,同時,利用增強轉發訊息使用率的方式來減少通訊成本。
Data exchange is one of the main reasons that social network takes form. In application of ad hoc wireless network, appropriate information sharing for demanders helps reduce the communication overhead. Thus, social routing is a new research direction. However, we find, currently most social networks work in a centralized way, they always collect other’s information in their environment and actively predict utilization for their route. And we also find there are less social routing researches related to on-demand routing protocols, because they are not proactive for routing.
Actually, these on-demand routing protocols are aimed to save more energy and consume less bandwidth; their features make them more and more popular recently. In this paper, we introduce the concept of using tag matching for routing information prediction and intermediates nodes can save
the transfer data by pre-enumerated person list matching with tags. We implement simulation among on-demand routing
protocol AODV, and evaluation its performance. We except to keep the advantage of AODV, simultaneously enhance the utilization of forwarding data that would cost down communication overhead.
[1] Furnas, G. W., Fake, C., von Ahn, L., Schachter, J., Golder, S., Fox, K., Davis, M., Marlow, C., and Naaman, M. “Why do tagging systems work?” In Proc. CHI '06
Extended Abstracts. ACM Press, New York, NY, 36-39, 2006.
[2] Hammond, T., T. Hannay, B. Lund, and J. Scott. “Social bookmarking tools: A general review.” D-Lib Magazine, 11(4), April 2005
[3] D. Weinberger. “How tagging changes people’s relationship to information and each other.” Pew Internet & American Life Project, 2007
[4] Morgan Ames and Mor Naaman. “Why we tag: motivations for annotation in mobile and online media.” In CHI ’07: Proceedings of the SIGCHI conference on Human factors in computing systems, pages 971–980, New York, NY, USA, 2007. ACM Press.
[5] Why Do People Tag? Motivations for Photo Tagging
[6] Social Tagging And Music Information Retrieval
[7] M. Mandel and D. Ellis. “A web-based game for collecting music metadata.” In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007), 2007.
[8] D. Turnbull, R. Liu, L. Barrington, and G. Lanckriet. A game-based approach for collecting semantic annotations of music. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007), 2007.
[9] E. Law, L. von Ahn, R. Dannenberg, and M. Crawford. Tagatune: A game for music and sound annotation. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007), 2007.
[10] Vander Wal, T.
“Folksonomy Definition and Wikipedia.” November 2, 2005
( http://www.vanderwal.net/random/entrysel.php?blog=1750 )
[11] Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais, S. T. “The vocabulary problem in human-system communication.Commun.” ACM 30, 11 (1987).
[12] “Rashmi Sinha. A cognitive analysis of tagging.”
( http://www.rashmisinha.com/archives/05 09/taggingcognitive.html. )
[13] C. Marlow, M. Naaman, D. Boyd, and M. Davis. “HT06, Tagging paper, Taxonomy, Flickr, Academic Article, To read.” In HYPERTEXT ’06: Proceedings of the seventeenth conference on Hypertext and hypermedia, pages 31–40, New York, NY, USA, 2006. ACM.
[14] Sommaruga L, Rota P, Catenazzi N. “ "Tagsonomy": easy access to Web sites through a combination of taxonomy and folksonomy” Advances in Intelligent and Soft Computing. 2011
[15] Adam Mathes “Folksonomies - Cooperative Classification and Communication Through Shared Metadata” Computer Mediated Communication - LIS590CMC Graduate School of Library and Information Science University of Illinois
Urbana-Champaign December 2004
[16] Yusef Hassan-Montero and Víctor Herrero-Solana, “Improving Tag-Clouds as Visual Information Retrieval Interfaces” International Conference on Multidisciplinary Information Sciences and Technologies, InSciT2006. Mérida, Spain. October 25-28, 2006.
[17] E. Michlmayr, S. Cayzer: "Learning User Profiles from Tagging Data and
Leveraging them for Personal(ized) Information Access", WWW 2007
[18] C.E. Perkins, P. Bhagwat, “Highly Dynamic Destination Sequence-Vector
Routing (DSDV) for Mobile Computers”, Computer Communication Review, 24(4),
1994, 234-244.
[19] David B. Johnson and David A. Maltz. “Dynamic source routing in ad hoc wireless networks”, Mobile Computing, Kluwer Academic Publishers, edited by Tomasz Imielinski and Hank Korth, chapter 5, pages 153–181, 1996.
[20] C.E. Perkins and E.M. Royer, “Ad-Hoc on-Demand Distance Vector Routing,”Proc. Workshop Mobile Computing Systems and Applications (WMCSA ’99),
pages 90-100 Feb. 1999
[21] Jisun An, Yangwoo Ko and Dongman Lee, “A social relation aware routing protocol for mobile ad hoc networks”, Pervasive Computing and Communications,
2009
[22] K. Haythommthwaite, “Characterized social networks as having the
following components: Actors,” New York: Nodes, 2005.
[23] Li Liu & Yanfang Jing, “A Surve on Social-based Routing and Forwarding Protocols in Opportunistic Networks” 2012 IEEE 12th International Conference on Computer and Information Technology
[24] Pan Hui Jon Crowcroft, “How Small Labels create Big Improvements” ACM,
200X
[25] Shu-Yan Chan et al, “Community Detection of Time-Varying Mobile
Social Networks” In Proceedings of Complex (1).ACM 2009
[26] M. E. J. Newman and M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69,026113, 2004
[27] P. Marsden. “Egocentric and sociocentric measures of network centrality” Social Networks, 24(4):407–422, 2002.
[28] J. Ghosh, S. J. Philip, and C. Qiao. “Sociological orbit aware location approximation and routing (solar) in dtn,” Technical report, State University of New York at Bu?alo, April 2005. 2005-12.
[29] F. Ekman et al., “Working Day Movement Model,” Proc. 1st ACM SIGMOBILE Wksp. Mobility Models, 2008, pp. 33–40.
[30] A. Lindgren, A. Doria, and O. Schelen. “Probabilistic routing in intermittently connected networks,” SIGMOBILE Mobile Computing and Communications Review, 7(3):19–20, 2003.
[31] Q. Yuan, I. Cardei, and J. Wu, “Predict and Relay: An Efficient
Routing in Disruption-Tolerant Networks,” MobiHoc ’09, May
2009.
[32] Nazir, F., Ma, J., Seneviratne, A., “Time Critical Content Delivery
Using Predictable Patterns in Mobile Social Networks” Computational Science and Engineering, 2009.
[33] E.M. Daly and M. Haahr, “Social Network Analysis for Routing in
Disconnected Delay-Tolerant MANETs,” Proc. ACM MobiHoc, Sept. 2007.
[34] A. Mtibaa, M. May, C. Diot, and M. Ammar, “PeopleRank: Social
Opportunistic Forwarding,” in INFOCOM Mini Conference, 2010.