研究生: |
徐維廷 Wei-Ting Hsu |
---|---|
論文名稱: |
以樹枝狀高分子作為多功能藥物載體之應用 |
指導教授: |
李育德
Yu-Der Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 樹枝狀高分子 、藥物傳輸 、磁振造影 |
外文關鍵詞: | dendrimer, drug delivery, MRI |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以樹枝狀高分子為核心,樹枝狀高分子為一新發展的高分子,其特色在於化學鍵從中心的核由內向外發散,形成樹枝狀的分枝,利用其高度分枝的結構,在表面官能基上,可經由適當改質而接上不同的分子作多功能的運用,而將之應用在生醫材料方面。
本實驗以PEG作為核心,採發散式合成法向外產生分枝的OH表面官能基,合成出一至三代的樹枝狀高分子,並在高分子表面接枝上經螯合穩定之造影活性釓元素MRI顯影劑、具癌症主動標的功能的葉酸、及抗癌藥物MTX。實驗結果顯示,由樹枝狀高分子所攜帶多個顯影劑,能大幅提高每單位分子造影劑的訊號強度,可有效運用於醫學造影上。而接上葉酸後,由於其癌組織辨識的效果,可增加載體被癌症細胞攝取的機會,因此在醫學上,未來可結合醫學造影以及癌症治療,利用此多功能藥物載體,一方面將藥物有效送至癌組織,一方面利用MRI隨時偵測治療情形。且材料經由細胞毒性測試,證實其具有生物相容性,因此在生醫材料的利用上,有其發展的可行性。
1. D.A. Tomalia, A.M. Naylor, and W.A. Goddard III, “Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter”, Angew. Chem. Int. Ed. Engl., 29, 138(1990)
2. P.J. Flory, and J. Rehner, “Statistical mechanics of cross-linked polymer networks”, J. Chem. Phys., 11, 512(1943)
3. D.A. Tomalia, H. Baker, J. Dewald , M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, “A new class of polymers: starburst-dendritic macromolecules”, Polym. J., 17, 117(1985)
4. M. Liu, and J.M.J. Fréchet, “Designing dendrimers for drug delivery”, Pharm. Sci. Technol. Today, 2, 393(1999)
5. D.A. Tomalia, “Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry”, Prog. Polym. Sci., 30, 294(2005)
6. G.R. Newkome, Z. Yao, G.R. Baker, and V.K. Gupta, “Cascade molecules: a new approach to micelles”, J. Org. Chem., 50, 2003(1985)
7. C.J. Hawker, and J.M.J. Fréchet, “Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules”, J.Am. Chem. Soc., 112, 7638(1990)
8. A.W. Bosman, H.M. Jassen, and E.W. Meijer, “About dendrimers: structure, physical properties, and applications”, Chem. Rev., 99, 1665(1999)
9. J.F.G.A. Jansen, E.M.M. de Brabander-van den Berg, and E.W. Meijer, “Encapsulation of guest molecules into a dendritic box”, Science, 266, 1226(1994)
10. G.R. Newkome, B.D. Woosley, E. He, C.N. Moorefield, R. Güther, G.R. Baker, G.H. Escamilla, J. Merrill, and H. Luftmann, “Supramolecular chemistry of flexible, dendritic-based structures employing molecular recognition”, Chem. Commun., 2737(1996)
11. G.R. Newkome, C.N. Moorefield, G.R. Baker, M.J. Saunders, and S.H. Grossman, “Unimolecular micelles”, Angew. Chem. Int. Ed. Engl., 30, 1178(1991)
12. D.A. Tomalia, and P.R. Dvornic, “What promise for dendrimers”, Nature, 372, 617 (1994)
13. B. Klajnert, and M. Bryszewska, “Dendrimers: properties and applications”, Acta Biochim. Pol., 48, 199(2001)
14. A.C. Antony, “Folate receptors”, Ann. Rev. Nutr., 16 ,501(1996)
15. S.D. Weitman, R.H. Lark, L.R. Coney, D.W. Fort, V. Frasca, and V.R. Zurawski Jr., “Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues”, Cancer Res., 52, 3396(1992)
16. S. Wang, and P.S. Low, “Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells”, J. Controlled Release, 53, 39(1998)
17. S.R. Stone, J.F. Morrison, “Kinetic mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli”, Biochemistry, 21, 3757(1982)
18. N. Malik, E.G. Evagorou, and R. Duncan, “PAMAM dendrimer-platinate”, Proc. Int. Symp. Control. Release Bioact. Mater., 24, 107(1997)
19. K. Kono, M. Liu, and J.M.J. Fréchet, “Design of dendritic macromolecules containing folate or methotrexate residues”, Bioconjug. Chem., 10, 1115(1999)
20. A.K. Patri, J.F. Kukowska-Latallo, and J.R. Baker Jr., “Targeted drug delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex”, Adv. Drug Deliv. Rev., 57, 2203(2005)
21. S. Langereis, Q.G. de Lussanet, M.H.P. van Genderen, W.H. Backes, and E.W. Meijer, “Multivalent contrast agents based on gadolinium-diethylenetriaminepentaacetic acid-terminated poly(propylene imine) dendrimers for magnetic resonance imaging”, Macromolecules, 37, 3084(2004)
22. T. Shen, R. Weissleder, M. Papisov, A. Bogdanov Jr., and T.J. Brady, “Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties”, Magn. Reson. Med., 29, 599(1993)
23. J. Feng, X. Li, F. Pei, G. Sun, X. Zhang, and M. Liu, “An evaluation of gadolinium polyoxometalates as possible MRI contrast agent”, Magn. Reson. Imaging, 20, 407(2002)
24. P. Caravan, J.J. Ellison, T.J. McMurry, and R.B. Lauffer, “Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications”, Chem. Rev., 99, 2293(1999)
25. W. Krause, N. Hackmann-Schlichter, F.K. Maier, and R. Muller, “Dendrimers in diagnostics”, Top. Curr. Chem., 210, 262(2000)
26. E.C. Wiener, M.W. Brechbiel, H. Brothers, R.L. Magin, O.A. Gansow, D.A. Tomalia, and P.C. Lauterbur, “Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents”, Magn. Reson. Med., 31, 1(1994)
27. L.H. Bryant Jr., M.W. Brechbiel, C. Wu, J.W.M. Bulte, V. Herynek, and J.A. Frank, “Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates”, J. Magn. Reson. Imaging, 9, 348(1999)
28. R. Jevprasesphant, J. Penny, R. Jalal, D. Attwood, N.B. McKeown, and A. D’Emanuele, “The influence of surface modification on the cytotoxicity of PAMAM dendrimers”, Int. J. Pharm., 252, 263(2003)