簡易檢索 / 詳目顯示

研究生: 蘇錦榮
Chin-Lung Su
論文名稱: 磁性隨機存取記憶體之寫入干擾錯誤模型及其測試與診斷
Write Disturbance Fault Modeling, Testing, and Diagnosis for MRAM
指導教授: 吳誠文
Cheng-Wen Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 83
中文關鍵詞: 故障分析錯誤模型錯誤模擬磁性隨機存取記憶體記憶體測試記憶體診斷非揮發性記憶體寫入干擾錯誤
外文關鍵詞: Failure analysis, Fault model, Fault simulation, Magnetic random access memory (MRAM), Memory testing, Memory diagnosis, Nonvolatile memory, Write disturbance fault
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁性隨機存取記憶體(MRAM)被視為在未來具有潛力可以取代現有的靜態隨機存取記憶體(SRAM)、動態隨機存取記憶體(DRAM)及快閃記憶體(Flash memory)等等嵌入式和商用式記憶體。其同時具備了隨機存取記憶體及快閃記憶體的優點,因此在未來很有可能會被廣泛地應用在系統單晶片(System-On-Chip)上。而近幾年來,已有部分磁性隨機存取記憶體產品在市場上出現,但並不表示其測試相關的問題都已被完全解決。

    為了確保磁性隨機存取記憶體產品的品質及良率,本論文針對該記憶體提出了「寫入干擾錯誤模型(Write Disturbance Fault Model)」。同時也針對磁性隨機存取記憶體發展出稱作RAMSES-M的錯誤模擬程式,可以利用它來建構寫入干擾錯誤模型的最短測試演算法及評估對應的錯誤覆蓋率。我們也針對此錯誤提出一特殊之偵測方式與對應之測試演算法。然而為了找出寫入干擾錯誤的錯誤原因,我們亦提出一「可適應診斷演算法(Adaptive Diagnosis Algorithm)」來進行錯誤診斷。藉由工研院電光所合作的磁性穿隧接面(Magnetic Tunneling Junction)元件模型,我們也建立了「翻轉式磁性隨機存取記憶體(Toggle MRAM)」陣列的SPICE電路模型,以獲得寫入干擾錯誤模型及其診斷方法的電路模擬結果。

    此外,本論文也設計了一個具有寫入干擾錯誤診斷能力的內建式自我測試(Built-In Self-Test)電路;同時利用翻轉式磁性隨機存取記憶體的「寫入前先讀(Read-before-Write)」機制,來縮短整體的測試時間,針對1-Mbit磁性隨機存取記憶體所提出的內建式自我測試電路之硬體面積只佔該記憶體的0.05%。最後,我們也將所提出之測試演算法應用在實際晶片量測上,晶片量測結果可以驗證寫入干擾錯誤的存在,且本論文所提出之測試方法亦可以提高磁性隨機存取記憶體的錯誤偵測能力。


    The Magnetic Random Access Memory (MRAM) is considered one of the potential candidates that will replace current on-chip memories (RAM, EEPROM, and flash memory) in the future.
    The MRAM is fast and does not need a high supply voltage for Read/Write operations, and is compatible with the CMOS technology. It can also endure almost unlimited Read/Write cycles. These combined advantages of RAM and flash memory make it a potential choice for SOC.

    In this thesis, we present the Write Disturbance Fault (WDF) model for MRAM, i.e., a fault that affects the data stored in the MRAM cells due to excessive magnetic field during the Write operation. March tests have high coverage for conventional RAM faults; however, they do not detect
    all WDFs. To improve quality and yield of MRAM, we propose a new test algorithm to detect WDF for MRAM in this thesis. The proposed test algorithm is a March-based one, i.e., it has linear time complexity and can easily be implemented with built-in self-test (BIST). We then present an MRAM fault simulator called RAMSES-M, based on which we derive the shortest test for the proposed WDF model. Furthermore, to enhance the ability of diagnosis, we propose an adaptive
    diagnosis algorithm (ADA) that can efficiently identify the WDF for MRAM. However, the proposed test method can evaluate the process stability and uniformity using logical test method. We collaborated with EOL to construct the SPICE macro model for the magnetic tunneling junction (MTJ) device of the toggle MRAM to obtain circuit simulation results.

    Additionally, we present a built-in self-test (BIST) circuit that supports the proposed WDF diagnosis test method. We propose the BIST scheme based on the Decision Write mechanism of the toggle MRAM to reduce total test time. Experimental results show that the fault coverage of proposed test algorithm is higher than that of traditional March test algorithms. Also, circuit simulation result justifies that the adaptive diagnosis algorithm is useful for diagnosis of a WDF cell. The proposed BIST circuit has only 0.05% of hardware overhead for a 1-Mbit MRAM, and
    test time is further shortened for the toggle MRAM. Furthermore, the proposed WDF model is justified by chip measurement results. Finally, specific MRAM fault behavior and test issues are discussed.

    1 Introduction 1 1.1 Challenges in MRAM Testing 1 1.2 Memory Testing Associated Topics 2 1.3 Proposed Fault Model and Testing Method 2 1.4 Thesis Organization 3 2 Magnetic Random Access Memory (MRAM) 5 2.1 Overview of MRAM 5 2.1.1 Cell Structure 5 2.1.2 Asteroid MRAM 6 2.1.3 Toggle MRAM 7 2.2 Basic Operations 9 2.2.1 Write Operation 9 2.2.2 Read Operation 10 3 Write Disturbance Fault Model 12 3.1 Magnetic Field Impact on MRAM Operation 12 3.2 Write Disturbance Fault (WDF) Model 14 3.2.1 Shift of Operating Region 14 3.2.2 Proposed Fault Model 15 4 Testing for Write Disturbance Fault 17 4.1 Fault Activation and Detection 17 4.2 March-like Test Method 18 4.3 MRAM Fault Simulator: RAMSES-M 21 5 Diagnosis for Write Disturbance Fault 23 5.1 Purpose of WDF Diagnosis 23 5.2 Influence of Operating Region Shift 24 5.3 Adaptive Diagnosis Algorithm 25 5.3.1 Phase 1: Detection Phase 25 5.3.2 Phase 2: Current Scan Phase 28 5.4 Test Cost Evaluation 31 6 Circuit Simulation of MRAM 33 6.1 SPICE Model of MRAM 33 6.1.1 MTJ Cell Modeling 33 6.1.2 Disturbance Field Modeling 36 6.1.3 Modeling for Operating Region Shift 36 6.2 Faulty MRAM Simulation 38 7 Built-In Self-Test/Diagnosis Design 40 7.1 BIST Specification and Architecture 41 7.1.1 BIST Specification 41 7.1.2 BIST Architecture 41 7.2 Test and Diagnosis Scheme 43 7.3 Proposed BIST/D Design 44 7.3.1 Controller 46 7.3.2 Sequencer 47 7.3.3 Test Pattern Generator 47 7.4 Test Time Reduction 49 8 Experimental Results 53 8.1 SPICE Simulation 53 8.2 Fault Dictionary 56 8.3 BIST 61 8.3.1 Area Overhead 61 8.3.2 Test Time Reduction 62 9 Chip Measurement Results 64 9.1 Evidence of WDF 64 9.2 March Test Result 67 9.3 Current-Based Test Result 68 9.4 Specific MRAM Fault Behavior 70 10 Conclusions and Future Work 73 10.1 Conclusions 73 10.2 Future Work 74 10.2.1 Test Methodology Improvement 74 10.2.2 Failure Analysis Methodology 74 10.2.3 Fault Simulator Improvement 75

    [1] Semiconductor Industry Association, "International technology roadmap for semiconductors (ITRS), 2005 edition", Dec. 2005.

    [2] R. Barth, "ITRS commodity memory roadmap", in Proc. IEEE Int'l Workshop on Memory Technology, Design and Testing (MTDT), San Jose, July 2003, pp. 61–63.

    [3] B. N. Engel, N. D. Rizzo, J. Janesky, J. M. Slaughter, R. Dave, M. DeHerrera, M. Durlam, and S. Tehrani, "The science and technology of magnetoresistive tunneling memory", IEEE Trans. on Nanotechnology, vol. 1, no. 1, pp. 32–38, Mar. 2002.

    [4] M. Durlam, D. Addie, J. Akerman, B. Butcher, P. Brown, J. Chan,M. DeHerrera, B. N. Engel, B. Feil, G. Grynkewich, J. Janesky, M. Johnson, K. Kyler, J. Molla, J. Martin, K. Nagel, J. Ren, N. D. Rizzo, T. Rodriguez, L. Savtchenko, J. Salter, J. M. Slaughter, K. Smith, J. J. Sun, M. Lien, K. Papworth, P. Shah,W. Qin, R.Williams, L.Wise, and S. Tehrani, "A 0.18um 4Mb toggling MRAM", in Proc. IEEE IEDM, Dec. 2003, pp. 34.6.1–34.6.3.

    [5] A. Bette, J. DeBrosse, D. Gogl, H. Hoenigschmid, R. Robertazzi, C. Arndt, D. Braun, D. Casarotto, R. Havreluk, S. Lammers, W. Obermaier, W. Reohr, H. Viehmann, W. J. Gallagher, and G. Muller, "A high-speed 128Kbit MRAM core for future universal memory applications", in Symp. on VLSI Circuits, Digest of Technical Papers, June 2003, pp. 217–
    220.

    [6] J. J. Nahas, T. Andre, C. Subramanian, B. Garni, H. Lin, A. Omair, and W. Martino, "A 4Mb 0.18um 1T1MTJ toggle MRAM memory", in Proc. IEEE Int'l Solid-State Cir. Conf.
    (ISSCC), Feb. 2004, pp. 44–512.

    [7] J. Akerman, P. Brown, M. DeHerrera, E. Fuchs M. Durlam, D. Gajewski, M. Griswold, J. Janesky, J. J. Nahas, and S. Tehrani, "Demonstrated reliability of 4-Mb MRAM", IEEE
    Trans. on Device and Materials Reliability, vol. 4, no. 3, pp. 428–435, Sept. 2004.

    [8] T. W. Andre, J. J. Nahas, C. K Subramanian, B. J. Garni, H. S. Lin, A. Omair, and W. L. Martino, Jr., "A 4-Mb 0.18-um 1T1MTJ toggle MRAM with balanced three input sensing
    scheme and locally mirrored unidirectional write drivers", IEEE Jour. of Solid-State Circuits, vol. 40, no. 1, pp. 301–309, Jan. 2005.

    [9] D. Gogl, C. Arndt, J. C. Barwin, A. Bette, J. DeBrosse, E. Gow, H. Hoenigschmid, S. Lammers, M. Lamorey, L. Yu, T. Maffitt, K. Maloney, W. Obermaier, A. Sturm, H. Viehmann,
    D. Willmott, M. Wood, W. J. Gallagher, G. Mueller, and A. R. Sitaram, "A 16-Mb MRAM featuring bootstrapped write drivers", IEEE Jour. of Solid-State Circuits, vol. 40, no. 4, pp. 902–908, Apr. 2005.

    [10] D. Takashima and I. Kunishima, "High-density chain ferroelectric random access memory (Chain FeRAM)", IEEE Jour. of Solid-State Circuits, vol. 33, no. 5, pp. 787–792, May 1998.

    [11] N. Inoue and Y. Hayashi, "Effect of imprint on operation and reliability of ferroelectric random access memory (FeRAM)", IEEE Trans. on Electron Devices, vol. 48, no. 10, pp. 2266–2272, Oct. 2001.

    [12] N. Takaura, M. Terao, K. Kurotsuchi, T. Yamauchi, O. Tonomura, Y. Hanaoka, R. Takemura, K. Osada, T. Kawahara, and H. Matsuoka, "A gesbte phase-change memory cell featuring a tungsten heater electrode for low-power, highly stable, and short-read-cycle operation", in Proc. IEEE IEDM, Dec. 2003, pp. 37.2.1–37.2.4.

    [13] S. Kang, W.-Y. Cho, B.-H. Cho, K.-J. Lee, C.-S. Lee, H.-R. Oh, B.-G. Choi, Q. Wang, H.-J. Kim, M.-H. Park, Y.-H. Ro, S. Kim, C.-D. Ha, K.-S. Kim, Y.-R. Kim, D.-E. Kim, C.-K.
    Kwak, H.-G. Byun, G. Jeong, H. Jeong, K. Kim, and Y. Shin, "A 0.1-um 1.8-v 256-mb phasechange random access memory (PRAM) with 66-mhz synchronous burst-read peration",
    IEEE Jour. of Solid-State Circuits, vol. 42, no. 1, pp. 210–218, Jan. 2007.

    [14] M. Durlam, P. J. Naji, A. Omair, M. DeHerrera, J. Calder, J. M. Slaughter, B. N. Engel, N. D. Rizzo, G. Grynkewich, B. Butcher, C. Tracy, K. Smith, K. W. Kyler, J. J. Ren, J. A. Molla, W. A. Feil, R. G. Williams, and S. Tehrani, "A 1-Mbit MRAM based on 1T1MTJ bit cell integrated with copper interconnects", IEEE Jour. of Solid-State Circuits, vol. 38, no. 5, pp. 769–773, May 2003.

    [15] T. Honda, N. Sakimura, T. Sugibayashi, S. Miura, H. Numata, H. Hada, and S. Tahara, "MRAM-writing circuitry to compensate for thermal-variation of magnetization-reversal current", in Symp. on VLSI Circuits, Digest of Technical Papers, June 2002, pp. 156–157.

    [16] C.-C. Hung, M.-J. Kao, W.-C. Lin, S. Chao, D. Tang, and M.-J. Tsai, "Low writing current magnetoresistive random access memory (MRAM) with side metal pillar write word line (PWWL)", in Int’l Symp. on Advanced Magnetic Technologies, Taipei, Nov. 2003.

    [17] H. J. Kim, W. C. Jeong, K. H. Koh, G. J. Jeong, J. H. Park, S. Y. Lee, J. H. Oh, I. H. Song, H. S. Jeong, and K. Kim, "A process integration of high-performance 64-Kb MRAM", IEEE Trans. on Magnetics, vol. 39, no. 5, pp. 2851–2853, Sept. 2003.

    [18] T. Kai, M. Yoshikawa, M. Nakayama, Y. Fukuzumi, T. Nagase, E. Kitagawa, T. Ueda, T. Kishi, S. Ikegawa, Y. Asao, K. Tsuchida, H. Yoda, N. Ishiwata, H. Hada, and S. Tahara, "Improvement of robustness against write disturbance by novel cell design for high density
    MRAM", in Proc. IEEE IEDM, Dec. 2004, pp. 583–586.

    [19] B. N. Engel, J. Akerman, B. Butcher, R.W. Dave,M. DeHerrera,M. Durlam, G. Grynkewich, J. Janesky, S. V. Pietambaram, N. D. Rizzo, J. M. Slaughter, K. Smith, J. J. Sun, and S. Tehrani, "A 4-Mb toggle MRAM based on a novel bit and switching method", IEEE Trans. on Magnetics, vol. 41, no. 1, pp. 2851–2853, Jan. 2005.

    [20] L. Savtchenko, B. N. Engel, N. D. Rizzo,M. F. Deherrera, and J. Janesky, "Method of writing to scalablemagnetoresistive random accessmemory element", U.S. Patent No. 6545906, Apr. 2003.

    [21] T. Suzuki, Y. Fukumoto, K. Mori, H. Honjo, R. Nebashi, S. Miura, K. Nagahara, S. Saito, H. Numata, K. Tsuji, T. Sugibayashi, H. Hada, N. Ishiwata, Y. Asao, S. Ikegawa, H. Yoda, and S. Tahara, "Toggling cell with four antiferromagnetically coupled ferromagnetic layers
    for high density MRAM with low switching current", in Symp. on VLSI Circuits, Digest of Technical Papers, June 2005, pp. 188–189.

    [22] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice, ComTex Publishing, Gouda, The Netherlands, 1998.

    [23] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, "Fault simulation and test algorithm generation for random access memories", IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 4, pp. 480–490, Apr. 2002.

    [24] M. G. Mohammad, K. K. Saluja, and A. Yap, "Testing flash memories", in Proc. 13th Int’l Conf. on VLSI Design, Jan. 2000, pp. 406–411.

    [25] M. G. Mohammad and K. K. Saluja, "Flash memory disturbances: Modeling and test", in Proc. IEEE VLSI Test Symp. (VTS), Marina Del Rey, California, Apr. 2001, pp. 218 –224.

    [26] J.-C. Yeh, C.-F. Wu, K.-L. Cheng, Y.-F. Chou, C.-T. Huang, and C.-W. Wu, "Flash memory built-in self-test using march-like algorithms", in Proc. IEEE Int’l Workshop on Electronic Design, Test, and Applications (DELTA), Christchurch, Jan. 2002, pp. 137–141.

    [27] K.-L. Cheng, J.-C. Yeh, C.-W. Wang, C.-T. Huang, and C.-W. Wu, "RAMSES-FT: A fault simulator for flash memory testing and diagnostics", in Proc. IEEE VLSI Test Symp. (VTS), Monterey, California, Apr. 2002, pp. 281–286.

    [28] S.-K. Chiu, J.-C. Yeh, C.-T. Huang, and C.-W. Wu, "Diagonal test and diagnostic schemes for flash memories", in Proc. Int’l Test Conf. (ITC), Baltmore, Oct. 2002, pp. 37–46.

    [29] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y. Chang, "A programmable BIST core for embedded DRAM", IEEE Design & Test of Computers, vol. 16, no. 1, pp. 59–70,
    Jan.-Mar. 1999.

    [30] C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, and M.-C. Tsai, "BRAINS: A BIST complier for embedded memories", in Proc. IEEE Int’l Symp. on Defect and Fault
    Tolerance in VLSI Systems (DFT), Yamanashi, Oct. 2000, pp. 299–307.

    [31] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, and M. Lobetti-Bodorni, "A programmable BIST architecture for clusters of multiple-port SRAMs", in Proc. Int’l Test Conf. (ITC), 2000, pp. 557–566.

    [32] K. Zarrineh, R. D. Adams, T. J. Eckenrode, and S. P. Gregor, "Self test architecture for testing complex memory structures", in Proc. Int’l Test Conf. (ITC), Baltmore, Oct. 2000, pp. 547–556.

    [33] P. Jakobsen, J. Dreibelbis, G. Pomichter, D. Anand, J. Barth, M. Nelms, J. Leach, and G. Belansek, "Embedded DRAM built-in self-test and methodology for test insertion", in Proc. Int’l Test Conf. (ITC), Baltmore, Oct. 2001, pp. 975–984.

    [34] L.-T. Wang, C.-W. Wu, and X. Wen, Design for Testability: VLSI Test Principles and Architectures,
    Elsevier (Morgan Kaufmann), San Francisco, 2006.

    [35] R. P. Treuer and V. K. Agarwal, "Built-in self-diagnosis for repairable embedded RAMs", IEEE Design & Test of Computers, vol. 10, no. 2, pp. 24–33, June 1993.

    [36] T. J. Bergfeld, D. Niggemeyer, and E. M. Rudnick, "Diagnostic testing of embedded memories using BIST", in Proc. Conf. Design, Automation, and Test in Europe (DATE), Paris, Mar. 2000, pp. 305–309.

    [37] C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T. Teng, K. Chiu, and H.-P. Lin, "A built-in selftest and self-diagnosis scheme for embedded SRAM", Jour. of Electronic Testing: Theory and Applications, vol. 18, no. 6, pp. 637–647, Dec. 2002.

    [38] C.-W.Wang, K.-L. Cheng, C.-T. Huang, and C.-W.Wu, "Test and diagnosis of word-oriented multiport memories", in Proc. IEEE VLSI Test Symp. (VTS), Napa Valley, Apr. 2003, pp. 248–253.

    [39] J. M. Portal, H. Aziza, and D. N´ee, "EEPROM diagnosis based on threshold voltage embedded measurement", Jour. of Electronic Testing: Theory and Applications, vol. 21, no. 1, pp. 33–42, Feb. 2005.

    [40] J.-C. Yeh, Y.-T. Lai, Y.-Y. Shih, and C.-W. Wu, "Flash memory built-in self-diagnosis with test mode control", in Proc. IEEE VLSI Test Symp. (VTS), Palm Springs, May 2005, pp. 15–20.

    [41] C.-L. Su, R.-F. Huang, C.-W. Wu, C.-C. Hung, M.-J. Kao, Y.-J. Chang, and W.-C. Wu, "MRAM defect analysis and fault modeling", in Proc. Int’l Test Conf. (ITC), Charlotte, Oct. 2004, pp. 124–133.

    [42] C.-L. Su, C.-W. Tsai, C.-W. Wu, C.-C. Hung, Y.-S. Chen, and M.-J. Kao, "Testing MRAM for write disturbance fault", in Proc. Int’l Test Conf. (ITC), Santa Clara, Oct. 2006.

    [43] Y. Shimizu, H. Aikawa, K. Hosotani, N. Shimomura, T. Kai, Y. Ueda, Y. Asao, Y. Iwata, K. Tsuchida, S. Ikegawa, and H. Yoda, "MRAM write error categorization with QCKBD",
    in Proc. IEEE Int’l Workshop on Memory Technology, Design and Testing (MTDT), Taipei, Aug. 2006, pp. 3–8.

    [44] C.-L. Su, C.-W. Tsai, C.-W. Wu, J.-J. Chen, W.-C. Wu, C.-C. Hung, and M.-J. Kao, "Diagnosis for MRAM write disturbance fault", in Proc. Int’l Test Conf. (ITC), Santa Clara, Oct. 2007.

    [45] W. Reohr, H. Honigschmid, R. Robertazzi, D. Gogl, F. Pesavento, S. Lammers, K. Lewis, C. Arndt, Y. Lu, H. Viehmann, R. Scheuerlein, L.-K. Wang, P. Trouilloud, S. Parkin, W. Gallagher, and G. Muller, "Memories of tomorrow", IEEE Circuits and Devices, vol. 18, no. 5,
    pp. 17–27, Sept. 2002.

    [46] S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, and M. Samant, "Magnetically engineered spintronic sensors and memory", Proc. of the IEEE, vol. 91, no. 5, pp. 661–680, May 2003.

    [47] M. Durlam, T. Andre, P. Brown, J. Calder, J. Chan, R. Cuppens, R.W. Dave, T. Ditewig, M. DeHerrera, B.N. Engel, B. Feil, C. Frey, D. Galpin, B. Garni, G. Grynkewich, J. Janesky, G. Kerszykowski, M. Lien, J. Martin, J. Nahas, K. Nagel, K. Smith, C. Subramanian, J.J. Sun, J. Tamim, R. Williams, L.Wise, S. Zoll, F. List, R. Fournel, B. Martino, and S. Tehrani, "90nm toggle mram array with 0:29 um2 cells", in Symp. on VLSI Circuits, Digest of Technical
    Papers, June 2005, pp. 186–187.

    [48] T. Sugibayashi, N. Sakimura, T. Honda, K. Nagahara, K. Tsuji, H. Numata, S. Miura, K. Shimura, Y. Kato, S. Saito, Y. Fukumoto, H. Honjo, T. Suzuki, K. Suemitsu, T. Mukai,
    K. Mori, R. Nebashi, S. Fukami, N. Ohshima, H. Hada, N. Ishiwata, N. Kasai, and S. Tahara, "A 16-Mb toggle MRAM with burst modes", IEEE Jour. of Solid-State Circuits, vol. 42, no. 11, pp. 2378–2385, Nov. 2007.

    [49] A. J. van de Goor and Z. Al-Ars, "Functional memory faults: a formal notation and a taxonomy", in Proc. IEEE VLSI Test Symp. (VTS), 2000, pp. 281–289.

    [50] B. F. Cockburn, "Tutorial on magnetic tunnel junctionmagnetoresistive random-access memory", in Proc. IEEE Int’l Workshop on Memory Technology, Design and Testing (MTDT), San Jose, Aug. 2004, pp. 46–51.

    [51] H.-J. Kim, S.-C. Oh, J.-S. Bae, K.-T. Nam, J.-E. Lee, S.-O. Park, H.-S. Kim, N.-I. Lee, U-In Chung, J.-T. Moon, and H.-K. Kang, "Development of magnetic tunnel junction for toggle MRAM", IEEE Trans. on Magnetics, vol. 41, no. 10, pp. 2661–2663, Oct. 2005.

    [52] Y.-K. Ha, J.-E. Lee, H.-J. Kim, J.-S. Bae, S.-C. Oh, K.-T. Nam, S.-O. Park, N.-I. Lee, H.-K. Kang, U.-I. Chung, and J.-T. Moon, "MRAM with novel shaped cell using synthetic antifreeomagnetic free layer", in Symp. on VLSI Technology and Circuits, Honolulu, June 2004, pp. 24–25.

    [53] J.-S. Yang, C.-R. Chang, W.-C. Lin, and Denny D. Tang, "Spin dynamics of unit cells in magnetic random access memory", IEEE Trans. on Magnetics, vol. 41, no. 2, pp. 879–882, Feb. 2005.

    [54] C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and C.-W. Wu, "Error catch and analysis for semiconductor memories using March tests", in Proc. IEEE/ACM Int’l Conf. on
    Computer-Aided Design (ICCAD), San Jose, Nov. 2000, pp. 468–471.

    [55] J.-F Li, K.-L. Cheng, C.-T. Huang, and C.-W. Wu, "March-based RAM diagnosis algorithms for stuck-at and coupling faults", in Proc. Int’l Test Conf. (ITC), Baltmore, Oct. 2001, pp. 758–767.

    [56] K.-L. Cheng, C.-W. Wang, J.-N. Lee, Y.-F. Chou, C.-T. Huang, and C.-W. Wu, "FAME: a fault-pattern based memory failure analysis framework", in Proc. IEEE/ACM Int’l Conf. on Computer-Aided Design (ICCAD), San Jose, Nov. 2003, pp. 595–598.

    [57] C.-F. Wu, C.-T. Huang, K.-L. Cheng, C.-W. Wang, and C.-W. Wu, "Simulation-based test algorithm generation and port scheduling for multi-port memories", in Proc. IEEE/ACM
    Design Automation Conf. (DAC), Las Vegas, June 2001, pp. 301–306.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE