研究生: |
莊智斌 Chuang, Chih-Pin |
---|---|
論文名稱: |
氫對金屬玻璃機械性質及結構之影響 Effects of Hydrogen on Mechanical Behavior and Structure of Bulk Metallic Glasses |
指導教授: |
黃嘉宏
Huang, Jia-Hong 喻冀平 Yu, Ge-Ping |
口試委員: |
程海東
Chen, Haydn 朱瑾 Chu, Jinn P. 呂福興 Lu, Fu-Hsing |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 163 |
中文關鍵詞: | 金屬玻璃 、氫脆 、高能X光散射 |
外文關鍵詞: | high energy X-ray, Pair-distribution Function Analysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
塊狀非晶合金,又稱”金屬玻璃”或”液態金屬”,是金屬材料領域內新開發的一類特殊材料。因為其特殊的非晶體結構,金屬玻璃具有優異的材料性能,例如: 高強度(~4-5 GPa, 鐵基金屬玻璃),高彈性極限(~2%),高抗腐蝕性及軟磁性。這些獨特的功能使其在先進工程材料領域有極大的應用潛力,尤其是在結構材料領域的應用。此外,研究人員發現部分塊狀金屬玻璃(BMG)成分有極佳的儲氫能力,可應用在與氫氣能源相關的產業,如氫儲存與氫燃料電池裡的質子交換薄膜。當氫吸附進入金屬材料裡,卻會造成材料機械性質的劣化,產生“氫脆”(hydrogen embrittlement)效應。如何解決“氫脆”現象一直是材料科學家和工程師研究的主題。不管對於以上任何一個角度來看,了解氫對非晶合金的力學性能和結構上的影響都是很重要的。
本研究主要探討氫對鋯基非晶合金的機械性質和微結構的影響。在對鋯基非晶彈性變形的研究中發現,在巨觀尺度下BMG的彈性型變,卻是由微觀尺度下的塑性變形所組成。通過高能X射線散射和各向異性PDF分析,結果顯示當金屬玻璃變形時,約有20~25%的體積是非彈性的型變, 只有約75%~80%的體積是彈性型變。正如同傳統的氧化物玻璃,金屬玻璃的變形是粘彈性的(viscoelastic)。在氫對金屬玻璃機械性質的研究中發現,氫會增加鋯基BMG的硬度,也會降低Zr基BMG的破裂韌性。高能X光散射實驗和非彈性中子散射實驗結果顯示,氫原子進入到金屬玻璃內部後會佔據四面體的間隙原子位置,也就是四面體的中心。而在不同原子所組成的四面體中,氫又會優先佔據主要是鋯原子組成的四面體。氫進入此四面體後,會與周圍鋯原子穩定結合。而進入非鋯原子組成的四面體裡的氫原子則會在停止充氫後慢慢的從材料中被釋放出來。同時,吸附在金屬玻璃內的氫原子會撐大基材的體積,造成金屬玻璃極大的殘餘應力,此殘餘應力造成材料局部的塑性變形,此效應可能是造成金屬玻璃氫脆化的主要原因。
Bulk-amorphous metallic alloys are a new class of materials that exhibit superior material properties, these unique features makes them perspective materials for various advanced engineering applications. In addition, some of the bulk metallic-glass (BMG) compositions have drawn much attention for their potential for hydrogen-energy-related applications, such as hydrogen purification/separation membranes. “Hydrogen in metals” has been a popular topic for material scientists and engineers for many decades. One of the main reasons is the infamous ability of hydrogen to degrade the mechanical properties of most metallic materials. Another reason is the potential of using metal hydrides for hydrogen-storage materials. For either perspective, it is very important to understand the effect of hydrogen on the mechanical behavior and structure of BMGs.
In the present research, the effect of hydrogen on the mechanical behavior and structure of Zr-based BMGs have been studied. The deformation of the Zr-based BMG was first examined. It is found that the elastic formation of BMG in macroscopic scale is not “elastic” in atomic scale. Through x-ray scattering and the anisotropic PDF analysis, it is shown that about 25% of the volume of a metallic glass is occupied by anelastic sites, which are soft and bear no static shear load. Just as other glasses, metallic glasses are fundamentally viscoelastic. The dissolved hydrogen was found to increase the hardness of the Zr-based BMG, roughly 40% right after hydrogen charging. The hydrogen will also embrittle the Zr-based BMG. The embrittlement is attributed to the rearrangement of the local atomic structure and the decohesion of atomic bond strength. The atomic pair-distribution-function (PDF) analysis and inelastic neutron scattering experiment reveals that hydrogen atoms preferentially occupy tetrahedral-like interstitial sites composed of mainly Zr atoms. The introduction of hydrogen atoms results in a ~ 15% volume expansion of the amorphous matrix. Such volume expansion produces a large residual strain at the hydrogen-charged area.
[1] Inoue A, Shen BL, Chang CT. Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4000 MPa. Intermetallics 2006;14:936.
[2] Dudek D. Study of hydrogen and deuterium permeation through Pd(77)Ag(23)membrane: Analysis of stationary state. Journal of Alloys and Compounds 2007;442:152.
[3] Dolan MD, Dave NC, Ilyushechkin AY, Morpeth LD, McLennan KG. Composition and operation of hydrogen-selective amorphous alloy membranes. Journal of Membrane Science 2006;285:30.
[4] Yamaura SI, Nakata S, Kimura H, Inoue A. Hydrogen permeation of the Zr65Al7.5Ni10Cu12.5Pd5 alloy in three different microstructures. Journal of Membrane Science 2007;291:126.
[5] Hao SQ, Widom M, Sholl DS. Probing hydrogen interactions with amorphous metals using first-principles calculations. Journal of Physics-Condensed Matter 2009;21:7.
[6] Birnbaum HK. Hydrogen effects on material behavior. In: Moody NR, Thompson AW, editors. Hydrogen effects on material behavior, TMS. Warrendale: TMS, 1990. p.639.
[7] Tetelman AS, Robertson WD. Mechanism of hydrogen embrittlement observed in iron-silicon single crystals. Transactions of the Metallurgical Society of Aime 1962;224:775.
[8] Petch NJ, Stables P. Delayed fracture of metals under static load. Nature 1952;169:842.
[9] Barnett WJ, Troiano AR. Crack propagation in the hydrogen-induced brittle fracture of steel. Transactions of the American Institute of Mining and Metallurgical Engineers 1957;209:486.
[10] Tien JK, Thompson AW, Bernstein IM, Richards RJ. Hydrogen transport by dislocations. Metallurgical Transactions a-Physical Metallurgy and Materials Science 1976;7:821.
[11] Beachem CD. New model for hydrogen-assisted cracking (hydrogen embrittlement). Metallurgical Transactions 1972;3:437.
[12] Shih DS, Robertson IM, Birnbaum HK. Hydrogen embrittlement of alpha-Titanium - Insitu TEM studies. Acta Metallurgica 1988;36:111.
[13] Ferreira PJ, Robertson IM, Birnbaum HK. Hydrogen effects on the interaction between dislocations. Acta Materialia 1998;46:1749.
[14] Birnbaum HK, Sofronis P. Hydrogen-enhanced localized plasticity - a mechanism for hydrogen-related fracture. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 1994;176:191.
[15] Suh D, Dauskardt RH. The effects of hydrogen on deformation and fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2001;319:480.
[16] Suh D, Dauskardt RH. Effects of pre-charged hydrogen on the mechanical and thermal behavior of Zr-Ti-Ni-Cu-Be bulk metallic glass alloys. Materials Transactions 2001;42:638.
[17] Suh D, Dauskardt RH. Hydrogen effects on the mechanical and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Scripta Materialia 2000;42:233.
[18] Daewoong S, Asoka-Kumar P, Dauskardt RH. The effects of hydrogen on viscoelastic relaxation in Zr-Ti-Ni-Cu-Be bulk metallic glasses: implications for hydrogen embrittlement. Acta Materialia 2002;50:537.
[19] Zhang ZF, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59CU20Al10Ni8Ti3 bulk metallic glass. Acta Materialia 2003;51:1167.
[20] Gebert A, Buchholz K, Leonhard A, Mummert K, Eckert J, Schultz L. Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 1999;267:294.
[21] Gebert A, Mummert K, Eckert J, Schultz L, Inoue A. Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy. Materials and Corrosion-Werkstoffe Und Korrosion 1997;48:293.
[22] Gebert A, Wolff U, John A, Eckert J, Schultz L. Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2001;299:125.
[23] Morrison ML, Buchanan RA, Liaw PK, Green BA, Wang GY, Liu CT, Horton JA. Corrosion-fatigue studies of the Zr-based Vitreloy 105 bulk metallic glass. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2007;467:198.
[24] Morrison ML, Buchanan RA, Peker A, Liaw PK, Horton JA. Electrochemical behavior of a Ti-based bulk metallic glass. J. Non-Cryst. Solids 2007;353:2115.
[25] Morrison ML, Buchanan RA, Leon RV, Liu CT, Green BA, Liaw PK, Horton JA. The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte. Journal of Biomedical Materials Research Part A 2005;74A:430.
[26] Ashby MF, Greer AL. Metallic glasses as structural materials. Scripta Materialia 2006;54:321.
[27] Shi YF, Falk ML. A computational analysis of the deformation mechanisms of a nanocrystal-metallic glass composite. Acta Materialia 2008;56:995.
[28] Das J, Tang MB, Kim KB, Theissmann R, Baier F, Wang WH, Eckert J. "Work-hardenable" ductile bulk metallic glass. Physical Review Letters 2005;94:4.
[29] Lee SW, Huh MY, Fleury E, Lee JC. Crystallization-induced plasticity of Cu-Zr containing bulk amorphous alloys. Acta Materialia 2006;54:349.
[30] Schuh CA, Hufnagel TC, Ramamurty U. Overview No.144 - Mechanical behavior of amorphous alloys. Acta Materialia 2007;55:4067.
[31] Zhang ZF, Eckert J, Schultz L. Fatigue and fracture behavior of bulk metallic glass. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 2004;35A:3489.
[32] Zhang ZF, He G, Eckert J, Schultz L. Fracture mechanisms in bulk metallic glassy materials. Physical Review Letters 2003;91.
[33] Chuang CP, Huang JH, Dmowski W, Liaw PK. unpublished results. unpublished results.
[34] Zhang ZF, Eckert J, Schultz L. Tensile and fatigue fracture mechanisms of a Zr-based bulk metallic glass. Journal of Materials Research 2003;18:456.
[35] Spaepen F. Homogeneous flow of metallic glasses: A free volume perspective. Scripta Materialia 2006;54:363.
[36] Spaepen F. Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metallurgica 1977;25:407.
[37] Lewandowski JJ, Greer AL. Temperature rise at shear bands in metallic glasses. Nature Materials 2006;5:15.
[38] Argon AS. Plastic-deformation in metallic glasses. Acta Metallurgica 1979;27:47.
[39] Turnbull D, Cohen MH. ON FREE-VOLUME MODEL OF LIQUID-GLASS TRANSITION. Journal of Chemical Physics 1970;52:3038.
[40] Turnbull D, Cohen MH. Free-volume model of amorphous phase - glass transition. Journal of Chemical Physics 1961;34:120.
[41] Cohen MH, Turnbull D. Molecular transport in liquids and glasses. Journal of Chemical Physics 1959;31:1164.
[42] Egami T. Formation and deformation of metallic glasses: Atomistic theory. Intermetallics 2006;14:882.
[43] Billinge SJL. Nanoscale structural order from the atomic pair distribution function (PDF): There's plenty of room in the middle. Journal of Solid State Chemistry 2008;181:1695.
[44] Takeshi Egami, Billinge SJL. Underneath the Bragg Peaks: Strucutral Analysis of Complex Materials. Oxford: Pergamon Press, Elsevier, 2003.
[45] Poulsen HF, Wert JA, Neuefeind J, Honkimaki V, Daymond M. Measuring strain distributions in amorphous materials. Nature Materials 2005;4:33.
[46] Hufnagel TC, Ott RT, Almer J. Structural aspects of elastic deformation of a metallic glass. Physical Review B 2006;73.
[47] Stoica M, Das J, Bednarcik J, Wang G, Vaughan G, Wang WH, Eckert J. Mechanical Response of Metallic Glasses: Insights from In-situ High Energy X-ray Diffraction. Jom 2010;62:76.
[48] Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D. Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Res. 1996;14:235.
[49] Wang XD, Bednarcik J, Saksl K, Franz H, Cao QP, Jiang JZ. Tensile behavior of bulk metallic glasses by in situ x-ray diffraction. Applied Physics Letters 2007;91.
[50] Mattern N, Schoeps A, Kuehn U, Acker J, Khvostikova O, Eckert J. Structural behavior of CuxZr100-x metallic glass (x=35-70). J. Non-Cryst. Solids 2008;354:1054.
[51] Turner JA. Sustainable hydrogen production. Science 2004;305:972.
[52] Turner JA. A realizable renewable energy future. Science 1999;285:687.
[53] Oriani RA. Hydrogen embrittlement of steels. Annual Review of Materials Science 1978;8:327.
[54] Oriani RA, Josephic PH. Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metallurgica 1974;22:1065.
[55] Johnson HH, Morlet JG, Troiano AR. Hydrogen, crack initiation, and delayed failure in steel. Transactions of the American Institute of Mining and Metallurgical Engineers 1958;212:528.
[56] Bastien P, Azou P. Effect of hydrogen on the deformation and fracture of iron and steel in simple tension. Proceedings of the First World Metallurgical Congress: ASM, 1951. p.535.
[57] Ferreira PJ, Robertson IM, Birnbaum HK. Hydrogen effects on the character of dislocations in high-purity aluminum. Acta Materialia 1999;47:2991.
[58] Simpson LA, Puls MP. Effects of stress, temperature and hydrogen content on hydride-induced crack growth in Zr-2.5 pct Nb. Metallurgical Transactions a-Physical Metallurgy and Materials Science 1979;10:1093.
[59] Dutton R, Nuttall K, Puls MP, Simpson LA. Mechanisms of hydrogen induced delayed cracking in hydride forming materials. Metallurgical Transactions a-Physical Metallurgy and Materials Science 1977;8:1553.
[60] Lin JJ, Perng TP. Cracking of amorphous Fe40Ni38Mo4B18 induced by static charging with hydrogen. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 1995;26:191.
[61] Schroeder HW, Koster U. Hydrogen embrittlement of metallic glasses. J. Non-Cryst. Solids 1983;56:213.
[62] Eliaz N, Eliezer D. Hydrogen effects on an amorphous Fe-Si-B alloy. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 2000;31:2517.
[63] Latanision RM, Compeau CR, Kurkela M. In: Gibala R, Hehemann RF, editors. Hydrogen Embrittlement and Stress Corrosion Cracking: A.S.M. International, 1984. p.297.
[64] Peker A, Johnson WL. A Highly Processable Metallic-Glass - Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters 1993;63:2342.
[65] Bakke E, Busch R, Johnson WL. The viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic-glass forming alloy in the supercooled liquid. Applied Physics Letters 1995;67:3260.
[66] Flores KM, Suh D, Howell R, Asoka-Kumar P, Sterne PA, Dauskardt RH. Flow and fracture of bulk metallic glass alloys and their composites. Materials Transactions 2001;42:619.
[67] Crabtree GW, Dresselhaus MS, Buchanan MV. The hydrogen economy. Physics Today 2004;57:39.
[68] Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy 2007;32:1121.
[69] Samwer K, Johnson WL. Structure of glassy early-transition-metal late-transition-metal hydrides. Physical Review B 1983;28:2907.
[70] Suzuki K, Hayashi N, Tomizuka Y, Fukunaga T, Kai K, Watanabe N. Hydrogen-atom environments in a hydrogenated ZrNi glass. J. Non-Cryst. Solids 1984;61-2:637.
[71] Rush JJ, Rowe JM, Maeland AJ. Neutron-scattering study of hydrogen vibrations in polycrystal and glassy TiCuH. Journal of Physics F-Metal Physics 1980;10:L283.
[72] Harris JH, Curtin WA, Tenhover MA. Universal features of hydrogen absorption in amorphous transition-metal alloys. Physical Review B 1987;36:5784.
[73] Lin XH, Johnson WL, Rhim WK. Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy. Materials Transactions Jim 1997;38:473.
[74] Wall JJ, Fan C, Liaw PK, Liu CT, Choo H. A combined drop/suction-casting machine for the manufacture of bulk-metallic-glass materials. Review of Scientific Instruments 2006;77:4.
[75] Iyer RN, Pickering HW. Mechanism and kinetics of electrochemical hydrogen entry and degradation of metallic systems. Annual Review of Materials Science 1990;20:299.
[76] Iyer RN, Pickering HW, Zamanzadeh M. Analysis of hydrogen evolution and entry into metals for the discharge-recombination process. Journal of the Electrochemical Society 1989;136:2463.
[77] Iyer RN, Pickering HW, Zamanzadeh M. A mechanistic analysis of hydrogen entry into metals during cathodic hydrogen charging. Scripta Metallurgica 1988;22:911.
[78] Bockris JO, Azzam AM. The kinetics of the hydrogen evolution reaction at high current densities. Transactions of the Faraday Society 1952;48:145.
[79] Chene J. Contribution of cathodic charging to hydrogen storage in metal-hydrides. Journal of the Less-Common Metals 1987;131:337.
[80] Bair HE. Glass transition measurements by DSC. In: Seyler RJ, editor. Assignment of the Glass Transition, ASTM STP 1249. Philadelphia: American Society for Testing and Materials, 1994. p.50.
[81] Zhai T, Xu YG, Martin JW, Wilkinson AJ, Briggs GAD. A self-aligning four-point bend testing rig and sample geometry effect in four-point bend fatigue. International Journal of Fatigue 1999;21:889.
[82] Patterson AL. A Fourier series method for the determination of the components of interatomic distances in crystals. Physical Review 1934;46:0372.
[83] Egami T, Billinge SJL. Underneath the Bragg Peaks : Structural Analysis of Complex Materials: Pergamon Press, 2003.
[84] Hempelmann R, Richter D, Eckold G, Rush JJ, Rowe JM, Montoya M. Localized hydrogen modes in LaNi5Hx. Journal of the Less-Common Metals 1984;104:1.
[85] Udovic TJ, Huang Q, Rush JJ. Hydrogen and deuterium site separation in fcc-based mixed-isotope rare-earth hydrides. Physical Review B 2000;61:6611.
[86] Udovic TJ, Rush JJ, Huang Q, Anderson IS. Neutron scattering studies of the structure and dynamics of rare-earth hydrides and deuterides. Journal of Alloys and Compounds 1997;253:241.
[87] Udovic TJ, Rush JJ, Anderson IS. Neutron spectroscopic comparison of beta-phase rare earth hydrides. Journal of Alloys and Compounds 1995;231:138.
[88] Anderson IS, Rush JJ, Udovic T, Rowe JM. Hydrogen pairing and anisotropic potential for hydrogen isotopes in yttrium. Physical Review Letters 1986;57:2822.
[89] Hempelmann R, Rush JJ. Hydrogen in Disordered and Amorphous Solids. New York: Plenum Publishing Corp., 1986.
[90] Kirchheim R, Sommer F, Schluckebier G. Hydrogen in amorphous metals .1. Acta Metallurgica 1982;30:1059.
[91] Kirchheim R. Hydrogen solubility and diffusivity in defective and amorphous metals. Progress in Materials Science 1988;32:261.
[92] Udovic TJ, Brown CM, Leaa JB, Brand PC, Jiggetts RD, Zeitoun R, Pierce TA, Peral I, Copley JRD, Huang Q, Neumann DA, Fields RJ. The design of a bismuth-based auxiliary filter for the removal of spurious background scattering associated with filter-analyzer neutron spectrometers. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 2008;588:406.
[93] Suzuki Y, Egami T. Shear deformation of glassy metals - breakdown of cauchy relationship and anelasticity. J. Non-Cryst. Solids 1985;75:361.
[94] Suzuki Y, Haimovich J, Egami T. Bond-orientational anisotropy in metallic glasses observed by x-ray-diffraction. Physical Review B 1987;35:2162.
[95] Zhang Z, Keppens V, Liaw PK, Yokoyama Y, Inoue A. Elastic properties of Zr-based bulk metallic glasses studied by resonant ultrasound spectroscopy. Journal of Materials Research 2007;22:364.
[96] Chuang CP, Huang JH, Dmowski W, Liaw PK, Li R, Zhang T, Ren Y. The effect of hydrogen charging on Ln-based amorphous materials. Applied Physics Letters 2009;95.
[97] Forsyth PJE. Fatigue damage and crack growth in aluminium alloys. Acta Metallurgica 1963;11:703.
[98] Wang GY, Liaw PK, Jin XQ, Yokoyama Y, Huang EW, Jiang F, Keer LM, Inoue A. Fatigue initiation and propagation behavior in bulk-metallic glasses under a bending load. Journal of Applied Physics 2010;108.
[99] Zhao JX, Qu RT, Wu FF, Zhang ZF, Shen BL, Stoica M, Eckert J. Fracture mechanism of some brittle metallic glasses. Journal of Applied Physics 2009;105.
[100] Zhang Z, Wu F, He G, Eckert J. Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials. Journal of Materials Science & Technology 2007;23:747.
[101] Zhang ZF, Wu FF, Gao W, Tan J, Wang ZG, Stoica M, Das J, Eckert J, Shen BL, Inoue A. Wavy cleavage fracture of bulk metallic glass. Applied Physics Letters 2006;89:3.
[102] Wang G, Zhao DQ, Bai HY, Pan MX, Xia AL, Han BS, Xi XK, Wu Y, Wang WH. Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Physical Review Letters 2007;98.
[103] Xi XK, Zhao DQ, Pan MX, Wang WH, Wu Y, Lewandowski JJ. Periodic corrugation on dynamic fracture surface in brittle bulk metallic glass. Applied Physics Letters 2006;89.
[104] Argon AS, Salama M. Mechanism of fracture in glassy materials capable of some inelastic deformation. Materials Science and Engineering 1976;23:219.
[105] Margolin H, Portisch H. Hydrogen-induced expansions in titanium-aluminum alloys. Transactions of the Metallurgical Society of Aime 1968;242:1901.
[106] Thomas GJ, Drotning WD. Hydrogen induced lattice expansion in nickel. Metallurgical Transactions a-Physical Metallurgy and Materials Science 1983;14:1545.
[107] Feenstra R, Griessen R, Degroot DG. Hydrogen induced lattice expansion and effective h-h interaction in single-phase PdHC. Journal of Physics F-Metal Physics 1986;16:1933.
[108] Jayalakshmi S, Fleury E, Leey DY, Chang HJ, Kim DH. Hydrogenation of Ti50Zr25Co25 amorphous ribbons and its effect on their structural and mechanical properties. Philosophical Magazine Letters 2008;88:303.
[109] Jayalakshmi S, Park SO, Kim KB, Fleury E, Kim DH. Studies on hydrogen embrittlement in Zr- and Ni-based amorphous alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2007;449:920.
[110] Paillier J, Rongeat C, Gutfleisch O, Gebert A. Hydrogen and Zr-based metallic glasses: Gas/solid absorption process and structure evolution. Journal of Alloys and Compounds 2011;509:1636.
[111] Libowitz GG. The nature and properties of transition metal hydrides. Journal of Nuclear Materials 1960;2:1.
[112] Chuang AC-P, Liu Y, Udovic TJ, Liaw PK, Yu G-P, Huang J-H. Inelastic neutron scattering study of the hydrogenated (Zr(55)Cu(30)Ni(5)Al(10))(99)Y(1) bulk metallic glass. Physical Review B 2011;83:174206.
[113] Egami T, Waseda Y. Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 1984;64:113.
[114] Guinier A. X-ray diffraction : In Crystal, Imperfect Crystals, and Amorphous Bodies: Dover, 1994.
[115] Das J, Pauly S, Duhamel C, Wei BC, Eckert J. Microstructure and mechanical properties of slowly cooled Cu47.5Zr47.5Al5. Journal of Materials Research 2007;22:326.
[116] Egami T, Poon SJ, Zhang Z, Keppens V. Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network. Physical Review B 2007;76.
[117] Weaire D, Ashby MF, Logan J, Weins MJ. Use of pair potentials to calculate properties of amorphous metals. Acta Metallurgica 1971;19:779.
[118] Kawashima A, Yamaura S, Ohtsu N, Kimura H, Inoue A. Mechanical properties of melt-spun amorphous Ni-Nb-Zr alloys after hydrogen charging. Materials Transactions 2006;47:1523.
[119] Menzel BC, Dauskardt RH. Fatigue damage initiation and growth from artificial defects in Zr-based metallic glass. Acta Materialia 2008;56:2955.
[120] Gilbert CJ, Lippmann JM, Ritchie RO. Fatigue of a Zr-Ti-Cu-Ni-Be bulk amorphous metal: Stress/life and crack-growth behavior. Scripta Materialia 1998;38:537.
[121] Gilbert CJ, Ritchie RO, Johnson WL. Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Applied Physics Letters 1997;71:476.
[122] Boliang Y, Ryan DH, Coey JMD, Altounian Z, Stromolsen JO, Razavi F. Hydrogen-induced change in magnetic-structure of the metallic-glass Fe89Zr11. Journal of Physics F-Metal Physics 1983;13:L217.
[123] Andersson G, Hjorvarsson B, Zabel H. Hydrogen-induced lattice expansion of vanadium in a Fe/V(001) single-crystal superlattice. Physical Review B 1997;55:15905.
[124] Laudahn U, Pundt A, Bicker M, von Hulsen U, Geyer U, Wagner T, Kirchheim R. Hydrogen-induced stress in Nb single layers. Journal of Alloys and Compounds 1999;293:490.
[125] Ieki Y, Asano S. Hydrogen-induced hardening and embrittlement in fcc fe-ni-mn alloys subjected to cathodic charging. Journal of the Japan Institute of Metals 1994;58:1008.
[126] Khanuja M, Mehta BR, Agar P, Kulriya PK, Avasthi DK. Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: Effect of hydrogen concentration, pressure, and temperature. Journal of Applied Physics 2009;106.
[127] Wood WW, Jacobson JD. Preliminary results from a recalculation of the monte carlo equation of state of hard spheres. Journal of Chemical Physics 1957;27:1207.
[128] Cordero B, Gomez V, Platero-Prats AE, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S. Covalent radii revisited. Dalton Transactions 2008:2832.
[129] Yamanaka S, Yoshioka K, Uno M, Katsura M, Anada H, Matsuda T, Kobayashi S. Thermal and mechanical properties of zirconium hydride. Journal of Alloys and Compounds 1999;293:23.
[130] Bowman RC, Craft BD, Cantrell JS, Venturini EL. Effects of thermal treatments on the lattice properties and electronic-structure of ZrHx. Physical Review B 1985;31:5604.
[131] Slaggie EL. Central force lattice dynamical model for zirconium hydride. Journal of Physics and Chemistry of Solids 1968;29:923.
[132] Pan SS, Moore WE, Yeater ML. Neutron inelastic scattering by zirconium hydride. Transactions of the American Nuclear Society 1966;9:495.
[133] Couch JG, Harling OK, Clune LC. Structure in neutron scattering spectra of zirconium hydride. Physical Review B 1971;4:2675.
[134] Khodabakhsh R, Ross DK. Determination of the hydrogen site occupation in the alpha-phase of zirconium hydride and in the alpha-phase and beta-phase of titanium hydride by inelastic neutron-scattering. Journal of Physics F-Metal Physics 1982;12:15.
[135] Pelah I, Eisenhauer CM, Hughes DJ, Palevsky H. Detection of optical lattice vibrations in Ge and ZrH by scattering of cold neutrons. Physical Review 1957;108:1091.
[136] Hempelmann R, Richter D, Rush JJ, Rowe JM. Hydrogen site distribution in the alloy system Nb100-xVxHy studied by neutron vibrational spectroscopy. Journal of the Less-Common Metals 1991;172:281.
[137] Udovic TJ, Rush JJ, Hempelmann R, Richter D. Low-energy vibrations and octahedral site occupation in Nb95V5H(D)(y). Journal of Alloys and Compounds 1995;231:144.
[138] Wu H, Zhou W, Udovic TJ, Rush JJ, Yildirim T, Huang Q, Bowman RC, Jr. Structure and interstitial deuterium sites of beta-phase ZrNi deuteride. Physical Review B 2007;75.