研究生: |
張哲誠 Chang, Che-Cheng |
---|---|
論文名稱: |
低能量電子點投影顯微術:貴金屬覆蓋W(111)單原子場發射電子源之研究 Low-Energy Electron Point Projection Microscope: Noble-Metal Covered W(111) Single-atom Emitters |
指導教授: |
黃英碩
Hwang, Ing-Shouh |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 93 |
中文關鍵詞: | 空間同調性 、同調性 、單原子針 、點投影顯微術 、感應電荷影響 、相位對比 |
外文關鍵詞: | spatial coherence, coherence, single-atom tip, point projection microscope, charge effect, phase contrast |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The coherence properties of electron beams field emitted from pyramidal single-atom tips (SATs) have been investigated with a custom-made low-energy electron point projection microscope (PPM). Individual single-walled carbon nanotubes (SWNTs) are also imaged with the coherent electron beam. In the first instance we have testing our PPM at room temperature and 90 K by using the normal tungsten tips and pyramidal single-atom tips. These results demonstrate a sufficient rigidity of the mechanical structure of the PPM and the experiments can be operated stably at room temperature and at 90 K. Furthermore, in the process of our experiments, we also find that the coherence of the single-atom emitter is higher than that of the normal tungsten field emitter. The characteristic of electron beams emitted from the pyramidal single-atom tips is investigated. These electron sources exhibit small opening angles, small energy dispersion, high brightness and full coherence. We have tried to quantify the properties of these single-atom emitters, such as the coherent length and the effective source size from the visibility and K factor.
We then use PPM based on the single-atom emitters to image individual SWNT and SWNT bundles. We have seen the semitransparent fringes resulting from an individual SWNT and bright fringes resulting from a SWNT bundle at z1>10 μm. Through theoretical simulations, we find that at z1>10 μm, the phase contrast dominates the interference patterns and at z1<5 μm, the induced charge on the individual SWNT dominates the interference patterns. Therefore, theoretical simulation proves that it is necessary to take the phase contrast and the charge effect into consideration for clarifying the interference patterns.
本論文是利用自製低能量電子點投影顯微儀研究金字塔型單原子針的電子場發射同調特性,以及以同調電子束對單管奈米碳管進行成像。首先,利用傳統場發射鎢針以及單原子針,在298 K與90 K進行儀器的測試。研究結果顯示,儀器在不同的溫度下都可穩定操作。另外,在實驗過程中亦發現單原子針的同調性,在不同的溫度下都比傳統場發射鎢針的同調性來的高。由單原子針所發射的電子束具有張角小,能量分佈小,高亮度以及全同調性等性質。由可見度及K factor嘗試量化單原子針的同調長度,以及發射源的有效尺度。
在單管奈米碳管成像的研究中發現,單原子針與樣品在不同的距離下,干涉條紋會顯現出不同的明暗與寬度。經由理論計算結果得知,單原子針與樣品在10微米的距離外,干涉條紋會受到樣品本身的相位影響;反之在5微米的距離內,干涉條紋則會受到電場在樣品上產生的感應電荷影響。因此,在詮釋干涉條紋影像時必須要考慮到樣品本身的相位與電場在樣品上產生的感應電荷影響。
1. G. A. Morton, E. G. Ramberg, “Point projector electron microscope” Phys. Rev. 56, 705 (1939).
2. E. W. Muller, 15th Field Emission Symposium Bonn 1968; E. W. Muller and T. T. Tsong, “In field ion microscopy: Principle and applications” Elsevier Publ., New York, 1969.
3. A. Tonomura, T. Matsuda, J. Endo, H. Todokoro and T. Komoda, “Development of a field emission electron microscope” J. Electron Microsc. 28, 1 (1979).
4. A. Tonomura, “Applications of electron holography” Rev. Mod. Phys. 59, 637 (1987).
5. A. Tonomura, “Present and future of electron holography” J. Electron Microsc. 38, S43 (1989).
6. A. Tonomura, “Electron holography, a new view of the microscopic” Phys. Today 22, 22 (1990).
7. P. W. Hawkes, “Coherence in electron optics”, in Adv. Opt. and Electron Microsc. 7, 101 (Academic, London 1978).
8. David Attwood, “Soft X-ray and extreme ultraviolet radiation: Principles and Applications” New York: Cambridge University Press, 2000.
9. T. Hibi, “Pointws filaments I. Its production and its application” J. Electron Microsc. 4, 10 (1956).
10. P. A. Tipler, Modern Physics (Worth, New York, 1987), Section 5.7.; also see R. N. Bracewell, “The Fourier Transform and Its Applications” (McGraw-Hill, NY, 1986), Section edition.
11. D. Attwood, K. Halbach and K.-J. Kim, “Tunable Coherence X-ray”, Science 228, 1265 (1985).
12. A. E. Siegman, “Lasers” (University Science, Mill Valley, Ca, 1986), Chapter 1, 14 and 17, and Eq. 17-5, recast here in terms of rms quantities.
13. G. R. Fowles, “Introduction to Modern Optics” (Dover, New York, 1989), Chpater 3 and 9.
14. H. W. Fink, “Mono-atomic tips for scanning tunneling microscopy” IBM. J. Res. Develop. 30, 460 (1986).
15. H.-W. Fink, “Point source for ions and electrons” Physica Scripta. 38, 260-263 (1988).
16. W. Stocker, H.-W. Fink and R. Morin, “Low energy electron and ion projection microscopy” Ultramicroscopy 31, 379 (1989).
17. H.-W. Fink, W. Stocker and H. Schmid, “Holography with low-energy electrons” Phys. Rev. Lett. 65, 1204 (1990).
18. H.-W. Fink, H. J. Kreuzer and A. Wierzbicki, “Atomic resolution in lensless low-energy electron holography” Phys. Rev. Lett. 67, 1543 (1991).
19. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink and H. Schmid, “Theory of the point source electron microscope” Ultramicroscopy 45, 381 (1992).
20. G. M. Shedd, H. Schmid, P. Unger, H.-W. Fink and A. D. Dubner, “Combinations of point source electron beams and simple electrostatic lenses: Initial demonstrations of micron-scale lenses” Rev. Sci. Instrum. 64, 2579 (1993).
21. H. Schmid and H.-W. Fink, “Mechanical and electronic manipulation of nanometer-sized wires” Nanotechnology 5, 26 (1994).
22. H. Schmid, H.-W. Fink and H. J. Kreuzer, “In-line holography using low-energy electrons and photons: Applications for manipulation on a nanometer scale” J. Vac. Sci. Technol. B. 13, 2428 (1995).
23. H. Schmid, H.-W. Fink, C. Schiller and Theo L. van Rooy, “Focusing properties of micron-sized immersion lenses” Rev. Sci. Instrum. 67, 375 (1996).
24. H. Schmid and H.-W. Fink, “Carbon nanotubes are coherent electron sources” Appl. Phys. Lett. 70, 2679 (1997).
25. H.-W. Fink, H. Schmid, E. Ermantraut and T. Schulz, “Electron holography of individual DNA molecules” J. Opt. Soc. Am. A 14, 2168 (1997).
26. H,-W. Fink and C. Schonenberger, “Electrical conduction through DNA molecules” Nature 398, 407 (1999).
27. H,-W. Fink, “Visions & Reflections DNA and conducting electrons” Cell. Mol. Life Sci. 58, 1 (2001).
28. H. Okamoto and H.-W. Fink, “Cryogenic low energy electron point source microscope” Rev. Sci. Instrum. 77, 043714 (2006).
29. V. T. B inh, N. Garcia, “On the electron and metallic ion emission from nanotips fabricated by field-surface-melting technique-experiments on W and Au tips” Ultramicroscopy, 42, 80 (1992).
30. V. T. Binh, V. Semet and N. Garcia, “Low energy electorn diffraction by nano-objects in projection microscopy without magnetic shielding” Appl. Phys. Lett. 65, 2493 (1994).
31. V. T. Binh, N. Garcia and V. Semet, “Nanotips and nanosources: application to low-energy-electron microscopy” Phil. Trans. R. Soc. Lond. A 353, 281 (1995).
32. V. T. Binh and S. T. Purcell, “Field emission from nanotips” Appl. Phys. Lett. 111, 157 (1997).
33. V. T. Binh and V. Semet, “Interactions of low-energy coherent electron beams with nano-scale objects: a study by Fresnel projection microscopy” Ultramicroscopy 73, 107 (1998).
34. V. T. Binh, S.T. Purcell, V. Semet and F. Feschet, “Nanotips and nanomagnetism” Appl. Surf. Sci. 130-132, 803 (1998).
35. C. Adessi, M. Devel, V. T. Binh, P. Lambin and V. Meunier, “Influence of structural defects on Fresnel projection microscope images of carbon nanotubes:
Implications for the characterization of nanoscale devices” Phys. Rev. B 61, 13385 (2000).
36. V. T. Binh, P. Vincent, F. Feschet and J.-M. Bonrd, “Local analysis of the morphological properties of single-wall carbon nanotubes by Fresnel projection microscopy” J. Appl. Phys. 88, 3385 (2000).
37. R. Morin and A. Gargani, “Ultra low energy electron projection holograms” Phys. Rev. B 48, 6643 (1993).
38. S. Horch and R. Morin, “Field emission from atomic size sources” J. Appl. Phys. 74, 3652 (1993).
39. W. Lai, A. Degiovanni and R. Morin, “Microscopic observation of weak electric fields”, Appl. Phys. Lett. 74, 618 (1999)
40. M. Prigent and P. Morin, “Charge effect in point projection images of carbon fibres” Journal of Microscopy 199, 197 (2000).
41. M. Prigent and P. Morin, “Charge effect in point projection images of Ni nanowires and I collagen fibres” J. Phys. D: Appl. Phys. 34, 1167 (2001).
42. V. Georges, J. Bardon, A. Degiovanni and R. Morin, “Imaging charged objects using low energy electron coherent beams” Ultramicroscopy 90, 33 (2001).
43. J. Bardon, A. Degiovanni, V. Georges and R. Morin, “Conducting, semiconfucting and insulating objects observed by low-energy electron holography” Ultramicroscopy 92, 133 (2002).
44. J. Bardon, V. Georges, A. Degiovanni and R. Morin, “Improved low energy electron projection in-line holograms reconstruction application to the holograms of a tungsten tip” Micron 33, 493 (2002).
45. H. J. Krenuzer, “Low energy electron point source microscopy” Micron 26, 503 (1995).
46. A. Golzhauser, B. Volkel, B. Jager, M. Zharnikov, H. J. Kreuzer and M. Grunze, “holographic imaging of macromolecules” J. Vac. Sci. Technol. A. 16, 3025 (1998).
47. A. Golzhauser, B. Volkel, M. Grunze and H. J. Kreuzer, “Optimization of the low energy electron point source microscope imaging of macromolecules” Micron 33 241 (2002).
48. A. Degiovanni, J. Bardon, V. Georges and R. Morin, “Magnetic fields and fluxes probed by coherent low-energy electron beams” Appl. Phys. Lett. 85, 2938 (2004).
49. R. Daineche, A. Degiovanni, O. Grauby and R. Morin, “Source of low energy coherent electron beams” Appl. Phys. Lett. 88, 023101 (2006).
50. N. Garcia, J. J. Saenz and H De Raedt, “Electron emission from small sources” J. Phys.: Condens. Matter 1, 9931 (1989).
51. J. Y. Park, S. H. Kim, W. G. Park and Y. Kuk, “Interference pattern of a coherent electron beam”, Appl. Phys. Lett. 78, 1745 (2001)
52. J. C. H. Spence, J. M. Zuo and W. Qian, “Comment on Atomic resolution in lenless low energy electron holography” Phys. Rev. Lett. 68, 3256 (1992).
53. M. R. Scheinfin, W. Qian and J. C. H. Spence, “Aberrations of emission cathodes nanometer diameter filed emission electron sources” J. Appl. Phys. 73, 2057 (1993).
54. W. Qian, M. R. Scheinfin and J. C. H. Spence, “Electron optical properties of nanometer field emission electron sources” Appl. Phys. Lett. 62, 315 (1993).
55. J. C. H. Spence, W. Qian and A. J. Melmed, “Experimental low-voltagepoint projection microscopy and its possibilities” Ultramicroscopy 52, 473 (1993).
56. W. Qian, M. R. Scheinfin and J. C. H. Spence, “Brightness measurements of nanometer size field emission electron sources” J. Appl. Phys. 73, 7041 (1993).
57. J. C. H. Spence, W. Qian and M. P. Silverman, “Electron source brightness and degenseacy from fresnel fringes in field emission point projection micrsocopy” J. Vac. Sci. Technol. A. 12, 542 (1994).
58. M. P. Silverman, Wayne Strange and J. C. H. Spence, “The brightest beam in science new firections in electron microscopy and interferometry” Am. J. Phys. 63, 800 (1995).
59. U. Weierstall, J. C. H. Spence, M. Stevens and K. H. Downing, “Point projection electron imaging of tobacco mosaic virus at 40V electron energy” Micron 30, 335 (1999).
60. X. M. Henry Huang, J. M. Zuo and J. C. H. Spence, “wavefromt reconstruction for in line holograms formed by pure amplutude objects” Appl. Surf. Sci. 148, 229 (1999).
61. D. Van Dyck, H. Lichte and J. C. H. Spence, “Inelastic scattering and holography” Ultramicroscopy 81, 187 (2000).
62. J. C. H. Spence and C. Koch, “Atomic string holography” Phys. Rev. Lett. 86, 5510 (2001).
63. John Cumings, A. Zettl, M. R. McCarteny and J. C. H. Spence, “electron holography of field emitting carbon nanotubes” Phys. Rev. Lett. 88, 056804 (2002).
64. J. C. H. Spence, U. Weierstall and M. Howells, “Coherence and sampling requirements for diffractive imaging” Ultramicroscopy 101, 149 (2004).
65. G. Pozzi, “Theoretical considerations on the spatial coherence in field emission microscopes” Optik 77, 69 (1987).
66. K. Nagaoka, H. Fujii, K. Matsnda, M. Komaki, Y. Marata, C. Oshima and T. Sakurai, “Field emission spectroscopy from field-enhanced diffusion-growth nano-tips” Appl. Surf. Sci. 182, 12 (2001)
67. B. Cho, T. Ogawa, T. Ichimura, T. Ichinokawa, T. Amakusa and C. Oshima “Low temperature field emission system for development of ultracoherent electron beams” Rev. Sci. Instrum. 75, 10 (2004).
68. B. Cho, T. Ichimura, R. Shimizu and C. Oshima “Quantitative evaluation of spatial coherence of electron beam from low temperature field emitters” Phys. Rev. Lett. 94, 246103 (2004)
69. C. Oshima, E. Rokuta, T. Itagaki, T. Ishikawa, B. Cho, H. S. Kuo, I. S. Hwang, T. T. Tsong, “Demountable single atom electron source” e-J. Surf. Sci. Nanotechnol. 3, 412 (2005).
70. T. Ishikawa, T. Urata, B. Cho, E. Rokuta and C. Oshima, “Highly efficient electron gun with a single-atom electron source” Appl. Phys. Lett. 90, 143120 (2007)
71. T. Itagaki, E. Rokutao, H. S. Kuo, K. Nomurak, T. Ishikawa, B. Cho, I. S. Hwang, T. T. Tsong and C. Oshmia, “Stabilities in field electron emissions from noble-metal covered W nanotips: Apex structure dependence”, Surf. Interface Anal. 39, 299 (2007).
72. E. Rokuta, H. S. Kuo, T. Itagaki, K. Nomurak, T. Ishikawa, B. Cho, I. S. Hwang, T. T. Tsong and C. Oshmia, “Field emission spectra of single-atom tips with thermodynamically stable structures”, Surf. Sci. 602, 2508 (2008).
73. E. Rokuta, B. Cho, E. Rokuta and C. Oshima, “Direction confirmation of the high coherency of the electron beam from a nanotip” Appl. Phys. Express 1, 077001 (2008).
74. T. Y. Fu, L. C. Cheng, C. H. Nien and T. T. Tsong, “Method of creating a Pd-covered single-atom sharp W pyramidal tip: Mechanism and energetics of its formation” Phys. Rev. B 64, 113401 (2001).
75. H.S. Kuo, I.S. Hwang, T.Y. Fu, J.Y. Wu, C.C. Chang and T.T. Tsong, “Preparation and Characterization of Single-Atom Tips”, Nano Letters, 4, 2379 (2004).
76. H.S. Kuo, I.S. Hwang, T.Y. Fu, Y.C. Lin, C.C. Chang and T.T. Tsong, “Preparation of Single-Atom Tips and Their Field Emission Behaviors”, e-Journal of Surface Science and Nanotechnology, 4, 233 (2006).
77. H.S. Kuo, I.S. Hwang, T.Y. Fu, Y.C. Lin, C.C. Chang and T.T. Tsong, “Noble Metal/W(111) Single-Atom Tips and their Field Electron and Ion Emission Characteristics”, Japanese Journal of Applied Physics, 45, 8972 (2006).
78. J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer and J. Michael, “Scanning Electron Microscopy and X-Ray Microanalysis” (Plenum Press, New York 2003).
79. D. B. Williams and C. B. Carter, “Transmission Electron Microscopy” (Plenum Press, New York 1996).
80. N. de Jonge, Y. Lamy, K. Schoots, T. H. OOsterkamp, “High brightness electron beam from a multi walled carbon nanotube” Nature, 420, 393 (2002).
81. N. de Jonge, “Brightness of carbon nanotube electron sources” J. Appl. Phys. 95, 673 (2004).
82. Stenfan Frank, Philippe Poncharal, Z. L. Wang and Walt A. de Heer, “carbon naontube quantum resistors” Science 280, 1744 (1998).
83. Philip G. Collins, A. Zettl, Hiroshi Bando, Andreas Thess and R. E. Smalley, “Nanotube Nanodevice” Science 278, 100 (1997).
84. Antonio J. R. da Silva, A. Fazzio and Alex Antonelli, “Bundling up carbon nanotubes through Wigner defects” Nano Lett. 5, 1045 (2005).
85. Jean-Paul Salvetat, G. Andrew D. Briggs, Jean-Marc Bonard, Revathi R. Bacsa, Andrezej J. Kulik, Thomas Stockli, Nancy A. Burnham and Laszlo Forro, “Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes” Phys. Rev. Lett. 82, 944 (1999).
86. Sumio Iijima and Toshinari, “Single shell carbon nanotubes of 1 nanometer diameter” Nature 363, 603 (1993).
87. B. G. Frost, “An electron holographic study of electric charging and electric charge distributions” Ultramicroscopy 75, 105 (1998).
88. A. Sanchez and M. A. Ochando, “Calculation of mean inner potential” J. Phys. C. Solid State Phys. 18, 33 (1985).
89. P. S. Dorozhkin and Z.-C. Dong, “Charge distribution mapping by low energy electrons” Appl. Phys. Lett. 85, 4490 (2004).
90. Mitsuo Takeda, Wei Wang, Zhilui Duan and Yoko Miyamoto, “Coherence holography” Optics Express 13, 9629 (2005).
91. J. M. Zuo, M. Gao, J. Tao, B. Q. Li, R. Twesten and I. Petrov, “Coherent nano-area electron diffraction” Microscopy Reseach and Technique 64, 347 (2004).
92. Yahachi Saito, Koji Hamaguchi, Tetsuo Nishino, Koichi Hata, Kazuyuki Tohji, Atsuo Kasuya and Yuichiro Nishina, “Field emission patterns from Single-Walled carbon nanotubes” Jpn. J. Appl. Phys. 36, L1340 (1997).
93. Yahachi Saito and Sashiro Uemura, “Field emission from carbon nanotubes and its application to electron sources” Carbon 38, 169 (2000).
94. Yahachi Saito, Koichi Hata and Tsunetaka Murata, “Field emission patterns originating from pentagous at the tip of a carbon nanotube” Jpn. J. Appl. Phys. 39, L271 (2000).
95. G. F. Missiroli, G. Pozzi and U. Valdrè, “Electron Interferometry and interference electron micrsocopy” J. Phys. E: Sci. Instrum. 14, 649 (1981).
96. H. Lichte and M. Lehmann, “Electron holography-bacis and applications” Rep. Prog. Phys. 71, 016102 (2008).
97. J. Miao, T. Ohsuna, K. O. Hodgson and A. O’Keefe, “Atomic resolution three-dimensional electron diffraction microscopy” Phys. Rev. Lett. 89, 155502 (2002).
98. J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang and L. Nagahara, “Atomic Resolution Imaging of a Carbon Nanotube from Diffraction Intensities” Science 300, 1419 (2003).
99. J. M. Zuo, M. Gao, J. Tao, B. Q. Li, R. Twesten and I. Petrov, “Coherent nano-area electron diffraction” Microsc. Res. Tech. 64, 347 (2004).
100. N. Garcia and H. Rohrer, “Coherent electron beams and sources” J. Phys. Condens. Matter 1, 3737 (1989).
101. Edgar Volkl, Lawrence F. Allard and David C.Joy, “Introduction to electron holography” (Plenum Press, New York 1999)
102. D. Gabor, “A new microscopic principle” Nature 161, 777 (1948).
103. D. Gabor, “Microscopy by reconstructed wavefronts” Proc. Roy. Soc. (London) A 197, 454 (1949).
104. D. Gabor, “Microscopy by reconstructed wavefronts” Proc. Roy. Soc. (London) B 64, 449 (1951).