簡易檢索 / 詳目顯示

研究生: 鄭宸語
Cheng, Chen Yu
論文名稱: 兩種可產生較強兆赫波脈衝方法之研究
The Studies of Two Methods for Generation of Stronger Terahertz Pulses
指導教授: 潘犀靈
Pan, Ci Ling
口試委員: 賴暎杰
Lai, Yin Chieh
黃衍介
Huang, Yen Chieh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 98
中文關鍵詞: 兆赫波產生傾斜脈衝前緣鈮酸鋰晶體光整流效應光譜儀雙色光相位匹配石英玻璃聚甲基丙烯酸甲酯聚四氟乙烯高電阻係數矽晶片
外文關鍵詞: Terahertz generation, tilted-pulse-front, lithium niobate, optical rectification, spectroscopy, dual-color, phase-matching, fused silica, PMMA, Teflon, high-resistivity silicon wafer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此工作中,我們研究兩種可產生較強兆赫波脈衝的方法:(1)傾斜脈衝前緣泵浦高摻雜濃度鈮酸鋰晶體與(2)在碲化鋅晶體中同調控制雙色光脈衝雷射激發之光整流效應。首先,以傾斜脈衝前緣泵浦5 mol% 鎂摻雜鈮酸鋰晶體化學計量配比之兆赫波源,用於時析兆赫光譜量測時,可有效提升次兆赫頻段之訊噪比,如量測聚四氟乙烯 (Teflon) 及石英玻璃的光學常數低至50 GHz。在0.11.5 THz範圍,我們發現兆赫波吸收在此晶體中比低摻雜濃度者沒有明顯增加,高摻雜濃度鈮酸鋰晶體更可減緩兆赫波轉換過程之飽和現象,以提升兆赫波之轉換效率。這些現象可解釋為由於高摻雜濃度導致較多的缺陷,導致較多的聲子被缺陷散射,減少兆赫波於晶體中傳播所產生的電磁極化子 (polariton) 透過受激放射聲子的過程被轉變成為聲子對,降低了兆赫波吸收而減緩了飽和作用。
    其次,我們也研究了在碲化鋅晶體中同調控制雙色光脈衝雷射激發之光整流效應產生兆赫波的理論模型和實驗。我們觀察到由不同色光脈衝激發之兆赫波脈衝的相位反轉現象,以及不同能量比例與時間差之雙色光脈衝造成之光整流效應之變化。我們認為這主要是產生兆赫波之位移電流的機制,一般是由光子能量高於半導體能隙之脈衝激發後,由電磁波中的電場之偏振與頻率決定電荷在晶體結構的移動模式。用雙色光脈衝激發時的藍光 (400 nm,鈦藍寶石雷射的倍頻光) 之電場也會影響位移電流之產生,且兩種頻率之電磁波在晶格中有相反的非對稱特性,最終導致光整流效應中位移電流減弱。


    In this work, we studied two methods to generate stronger THz pulses: (1) by tilted-pulse-front pumping in highly-doped stoichiometric lithium niobate (sLN) and (2) by optical rectification (OR) in ZnTe by using dual-color pulses. Firstly, we build up the system with 5 mol% Mg: sLN. When this unique source was applied in THz-TDS, it can increase signal-noise ratio in sub-THz region, such as the extraction of the optical constant of Teflon and fused silica to 50 GHz. Further, the saturation effect which limits efficiency of THz generation can be much more unobvious than from the sLN with small Mg doping level with negligible increase of THz absorption in 0.1-1.5 THz region. Our explanation is that more phonons are scattered by the more defects in the highly-doped crystal. However, THz phonon-polaritons decay into pair of phonons. But, the less number of the phonons decreases the decay rate of the THz polaritons.
    Besides, to explore the possibility of enhancement in THz generation, we demonstrate the experimental and theoretical THz pulses generation by applying OR in ZnTe crystal semiconductor with coherent-controlled two-color laser. The phase inverse phenomenon of THz signals generated by fundamental wave (FW) and the second harmonic (SH) pulses can be observed. With different power ratios and delay times between two-color pulses, the competition of the THz generations between FW and SH pulses was revealed. The possible explanation of the competition is that the shift current which is one of the OR process is modulated by the different color pulse. Since the shift current is established by the excitation of the photons whose energy is above the energy bandgap of crystal and the state of the electromagnetic field of same frequency wave, the SH pulses whose photon energy is below energy bandgap also affect the generation of the shift current. Consequently, the shift current is reduced by the different color pulses.

    摘要 I Abstract II 致謝 III Table of Contents IV List of Figure VII List of Table XIV List of Abbreviations XV Chapter 1 Introduction 1 1.1 Terahertz technology 1 1.1.1 Introduction to terahertz band 1 1.1.2 Terahertz application 2 1.1.3 Terahertz time-domain spectroscopy 2 1.2 Terahertz generation 3 1.2.1 Introduction 3 1.2.2 Photoconductive antenna 5 1.2.3 Optical rectification 5 1.2.4 Tilted-pulse-front pumping 6 1.3 Terahertz detection 6 1.3.1 Introduction 6 1.3.2 Photoconductive antenna 7 1.3.3 Electro-optical sampling 7 1.3.4 Electric-field-induced-second-harmonic detection 7 1.4 Motivations and objectives 8 1.5 Thesis overview 8 Chapter 2 Theoretical model and analytical method 9 2.1 Introduction 9 2.2 Linear and nonlinear optics 9 2.2.1 Linear optics 9 2.2.2 Nonlinear optics 13 2.2.3 Second-order nonlinear polarization and susceptibility tensor 16 2.3 Terahertz generation: optical rectification 20 2.3.1 Optical rectification 20 2.3.2 Phase-matching condition of optical rectification 23 2.4 Terahertz generation: tilted-pulse-front pumping 27 2.4.1 Introduction 27 2.4.2 Lithium niobate 27 2.4.3 Photorefractive index damage in lithium niobate 29 2.4.4 THz refractive index and absorption in lithium niobate 31 2.4.5 Cherenkov radiation in electro-optical media 33 2.4.6 Principle of tilted-pulse-front pumping 34 2.4.7 Realization of tilted-pulse-front pumping 36 2.5 Terahertz generation: optical rectification in ZnTe 41 2.5.1 Introduction 41 2.5.2 Non-resonant optical rectification 42 2.5.3 Shift current 42 2.5.4 Injection current 43 2.6 Terahertz detection 44 2.6.1 Electro-optical sampling 44 2.7 Extraction of terahertz optical constants 46 2.7.1 Introduction 46 2.7.1 Thick sample 47 2.7.2 Extraction of complex refractive index 48 Chapter 3 Experimental Setup and System Performance 50 3.1 Introduction 50 3.2 Laser system 50 3.3 THz-TDS based on PC antenna 51 3.4 Terahertz generation with tilted-pulse-front pumping 52 3.4.1 Optical constants of highly-doped Mg: sLN 54 3.5 Terahertz generation in ZnTe 54 Chapter 4 Simulated results 56 4.1 Introduction 56 4.2 Tilt angle induced from grating 56 4.3 THz generation with absence of dispersion and absorption 59 4.4 Refractive index and absorption coefficient in Mg: sLN in THz regime 61 4.5 THz spectrum from tilted-pulse-front pumping 62 4.6 Simulation result 67 Chapter 5 Experimental results and discussion 69 5.1 Characteristic of tilted-pulse-front pumping system 69 5.1.1 Introduction 69 5.1.2 THz waveform and spectrum 69 5.1.3 Power dependence 71 5.1.4 Stability of system 76 5.2 Optical constant of sample detected by tilted-pulse-front pumping system 77 5.2.1 Introduction 77 5.2.2 Optical constant of 5 mol% Mg: sLN 78 5.2.3 Optical constant of fused silica 79 5.2.4 Optical constant of Teflon 80 5.2.5 Optical constant of high-resistivity silicon wafer 80 5.2.6 Optical constant of PMMA 81 5.3 Terahertz generation via dual-color competition of optical rectification in ZnTe 82 Chapter 6 Conclusions and future works 88 6.1 Conclusions 88 6.1.1 Tilted-pulse-front pumping 88 6.1.2 Terahertz generation via dual-color competition of optical rectification in ZnTe 89 6.2 Future works 89 Chapter 7 Reference 90

    1. J. Lab, "Terahertz radiation frequency range (http://wwwold.jlab.org/news/releases/2003/03felthz.html)," (2003).
    2. D. Auston, K. Cheung, and P. Smith, "Picosecond photoconducting Hertzian dipoles," Applied physics letters 45(3), 284-286 (1984).
    3. J. H. Strait, P. A. George, M. Levendorf, M. Blood-Forsythe, F. Rana, and J. Park, "Measurements of the carrier dynamics and terahertz response of oriented germanium nanowires using optical-pump terahertz-probe spectroscopy," Nano letters 9(8), 2967-2972 (2009).
    4. K. Ajito and Y. Ueno, "THz chemical imaging for biological applications," Terahertz Science and Technology, IEEE Transactions on 1(1), 293-300 (2011).
    5. A. Markelz, A. Roitberg, and E. Heilweil, "Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz," Chemical Physics Letters 320(1), 42-48 (2000).
    6. K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, "Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy," Japanese journal of applied physics 43(3B), L414 (2004).
    7. B. Hu and M. Nuss, "Imaging with terahertz waves," Optics letters 20(16), 1716-1718 (1995).
    8. M. Jacob, R. Piesiewicz, and T. Kürner, "Propagation modeling and system analysis for future multi gigabit THz communication," Frequenz 62(5-6), 132-136 (2008).
    9. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, "Efficient generation of THz pulses with 0.4 mJ energy," Optics Express 22(17), 20155-20163 (2014).
    10. L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, "Evanescent-wave proton postaccelerator driven by intense THz pulse," Physical Review Special Topics - Accelerators and Beams 17(3), 031301 (2014).
    11. C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, "Non-Drude Behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy," Quantum Electronics, IEEE Journal of 49(8), 677-690 (2013).
    12. D. Grischkowsky, S. Keiding, M. v. Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," JOSA B 7(10), 2006-2015 (1990).
    13. H. Hamster, A. Sullivan, S. Gordon, W. White, and R. Falcone, "Subpicosecond, electromagnetic pulses from intense laser-plasma interaction," Physical review letters 71(17), 2725 (1993).
    14. X. Xie, J. M. Dai, and X. C. Zhang, "Coherent control of THz wave generation in ambient air," Physical Review Letters 96(7) (2006).
    15. D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Physical Review Letters 53(16), 1555 (1984).
    16. B. Hu, X. C. Zhang, D. Auston, and P. Smith, "Free‐space radiation from electro‐optic crystals," Applied physics letters 56(6), 506-508 (1990).
    17. L. Xu, X. C. Zhang, and D. Auston, "Terahertz beam generation by femtosecond optical pulses in electro‐optic materials," Applied Physics Letters 61(15), 1784-1786 (1992).
    18. A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from< 110> zinc‐blende crystals," Applied physics letters 64(11), 1324-1326 (1994).
    19. T. Yajima and N. Takeuchi, "Far-infrared difference-frequency generation by picosecond laser pulses," Japanese Journal of Applied Physics 9(11), 1361 (1970).
    20. A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling," Applied physics letters 69(16), 2321-2323 (1996).
    21. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
    22. M. Abo-Bakr, J. Feikes, K. Holldack, P. Kuske, W. Peatman, U. Schade, G. Wüstefeld, and H.-W. Hübers, "Brilliant, coherent far-infrared (THz) synchrotron radiation," Physical review letters 90(9), 094801 (2003).
    23. G. Ramian, "The new UCSB free-electron lasers," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 318(1), 225-229 (1992).
    24. D. E. Spence, J. M. Evans, W. E. Sleat, and W. Sibbett, "Regeneratively initiated self-mode-locked Ti:sapphirelaser," Optics Letters 16(22), 1762-1764 (1991).
    25. J. Hebling, "Derivation of the pulse front tilt caused by angular dispersion," Optical and Quantum Electronics 28(12), 1759-1763 (1996).
    26. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, "Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics," Optics Letters 23(24), 1892-1894 (1998).
    27. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO 3 as a function of [Li]/[Nb] and MgO concentrations," Applied Physics Letters 77(16), 2494-2496 (2000).
    28. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, "Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3," Japanese journal of applied physics 41(1A), L49 (2002).
    29. L. Pálfalvi, J. Hebling, G. Almási, A. Peter, and K. Polgár, "Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects," Journal of Optics A: Pure and Applied Optics 5(5), S280 (2003).
    30. L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, K. Polgár, K. Lengyel, and R. Szipöcs, "Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3," Journal of applied physics 95(3), 902-908 (2004).
    31. L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO 3 in the THz range," Journal of applied physics 97(12), 123505-123505-6 (2005).
    32. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Optics Express 10(21), 1161-1166 (2002).
    33. I. Kozma, G. Almasi, and J. Hebling, "Geometrical optical modeling of femtosecond setups having angular dispersion," Applied Physics B 76(3), 257-261 (2003).
    34. J. Hebling, A. Stepanov, G. Almási, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Applied Physics B 78(5), 593-599 (2004).
    35. A. Stepanov, J. Kuhl, I. Kozma, E. Riedle, G. Almási, and J. Hebling, "Scaling up the energy of THz pulses created by optical rectification," Optics express 13(15), 5762-5768 (2005).
    36. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, "Efficient terahertz generation by optical rectification at 1035 nm," Optics express 15(18), 11706-11713 (2007).
    37. K.-L. Yeh, M. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10 μJ ultrashort terahertz pulses by optical rectification," Applied physics letters 90(17), 171121-171121-3 (2007).
    38. J. Hebling, K. L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, "Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities," Journal of the Optical Society of America B-Optical Physics 25(7), B6-B19 (2008).
    39. A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, "Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification," Optics Letters 33(21), 2497-2499 (2008).
    40. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, "Design of high-energy terahertz sources based on optical rectification," Optics Express 18(12), 12311-12327 (2010).
    41. J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, "Towards generation of mJ-level ultrashort THz pulses by optical rectification," Optics express 19(16), 15090-15097 (2011).
    42. J. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, "Generation of sub-mJ terahertz pulses by optical rectification," Optics letters 37(4), 557-559 (2012).
    43. M. Nagai, E. Matsubara, and M. Ashida, "High-efficiency terahertz pulse generation via optical rectification by suppressing stimulated Raman scattering process," Optics express 20(6), 6509-6514 (2012).
    44. S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, "High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate," Optics letters 38(5), 796-798 (2013).
    45. K. Ravi, W. R. Huang, S. Carbajo, E. Nanni, D. Schimpf, E. Ippen, and F. Kaertner, "Theory of THz generation by Optical Rectification using Tilted-Pulse-Fronts," arXiv preprint arXiv:1410.8120 (2014).
    46. K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, "Limitations to THz generation by optical rectification using tilted pulse fronts," Optics express 22(17), 20239-20251 (2014).
    47. X. Wu, S. Carbajo, K. Ravi, F. Ahr, G. Cirmi, Y. Zhou, O. D. Mücke, and F. X. Kärtner, "Terahertz generation in lithium niobate driven by Ti: sapphire laser pulses and its limitations," Optics Letters 39(18), 5403-5406 (2014).
    48. L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, "Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification," Applied Physics Letters 92(17), 171107 (2008).
    49. Z. Ollmann, J. Hebling, and G. Almási, "Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification," Applied Physics B 108(4), 821-826 (2012).
    50. J. Hebling, A. G. Stepanov, G. Almasi, and J. Kuhl, Enhanced polariton decay in LiNbO3 due to stimulated emission of acoustic phonons, in Ultrafast Phenomena XIV, Springer. p. 786-788, 2005.
    51. Q. Wu and X. C. Zhang, "Free‐space electro‐optic sampling of terahertz beams," Applied Physics Letters 67(24), 3523-3525 (1995).
    52. R. Terhune, P. Maker, and C. Savage, "Optical harmonic generation in calcite," Physical Review Letters 8(10), 404 (1962).
    53. J. Chen, P. Han, and X.-C. Zhang, "Terahertz-field-induced second-harmonic generation in a beta barium borate crystal and its application in terahertz detection," Applied Physics Letters 95(1), 011118 (2009).
    54. D. Cook, J. Chen, E. Morlino, and R. Hochstrasser, "Terahertz-field-induced second-harmonic generation measurements of liquid dynamics," Chemical physics letters 309(3), 221-228 (1999).
    55. J. Dai, X. Xie, and X.-C. Zhang, "Detection of broadband terahertz waves with a laser-induced plasma in gases," Physical review letters 97(10), 103903 (2006).
    56. J. Dai, J. Liu, and X.-C. Zhang, "Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma," Selected Topics in Quantum Electronics, IEEE Journal of 17(1), 183-190 (2011).
    57. L. Yun-Shik, "Principles of terahertz science and technology," NY: Springer (2008).
    58. H. Yen-Chieh, "Principles of nonlinear optics (Course reader)," (2014).
    59. R. W. Boyd, Nonlinear optics. Academic press, 2003.
    60. Q. Wu and X. C. Zhang, "Ultrafast electro‐optic field sensors," Applied physics letters 68(12), 1604-1606 (1996).
    61. M. Tani, S. Matsuura, K. Sakai, and S.-i. Nakashima, "Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs," Applied optics 36(30), 7853-7859 (1997).
    62. X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, "Generation of Femtosecond Electromagnetic Pulses from Semiconductor Surfaces," Applied Physics Letters 56(11), 1011-1013 (1990).
    63. D. J. Cook and R. M. Hochstrasser, "Intense terahertz pulses by four-wave rectification in air," Optics Letters 25(16), 1210-1212 (2000).
    64. M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G. Roskos, "Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves," Optics Letters 29(10), 1120-1122 (2004).
    65. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, "Generation of single-cycle THz transients with high electric-field amplitudes," Optics Letters 30(20), 2805-2807 (2005).
    66. P. Mukherjee and B. Gupta, "Terahertz (THz) Frequency Sources and Antennas - A Brief Review," International Journal of Infrared and Millimeter Waves 29(12), 1091-1102 (2008).
    67. P. K. Gallagher and H. M. O'BRYAN, "Characterization of LiNbO3 by dilatometry and DTA," Journal of the American Ceramic Society 68(3), 147-150 (1985).
    68. P. Bridenbaugh, "Factors affecting the growth of LiNbO 3 useful for nonlinear optical applications," Journal of Crystal Growth 19(1), 45-52 (1973).
    69. J. Czochralski, "Ein neues verfahren zur messung der kristallisationsgeschwindigheit der metalle," Z. phys. Chemie. 92, 219-221 (1918).
    70. K. Kitamura, J. Yamamoto, N. Iyi, S. Kirnura, and T. Hayashi, "Stoichiometric LiNbO 3 single crystal growth by double crucible Czochralski method using automatic powder supply system," Journal of crystal growth 116(3), 327-332 (1992).
    71. P. Lerner, C. Legras, and J. Dumas, "Stoechiometrie des monocristaux de metaniobate de lithium," Journal of Crystal Growth 3, 231-235 (1968).
    72. M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, "Measurement of Refractive Index and Absorption Coefficient of Congruent and Stoichiometric Lithium Niobate in the Terahertz Range," Journal of Infrared, Millimeter, and Terahertz Waves, 1-7 (2015).
    73. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Applied Physics Letters 77(9), 1244-1246 (2000).
    74. P. A. Cherenkov, "Visible emission of clean liquids by action of gamma radiation," Doklady Akademii Nauk SSSR 2, 451 (1934).
    75. O. E. Martinez, "Pulse distortions in tilted pulse schemes for ultrashort pulses," Optics communications 59(3), 229-232 (1986).
    76. F. Nastos and J. Sipe, "Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap," Physical Review B 74(3), 035201 (2006).
    77. R. von Baltz and W. Kraut, "Theory of the bulk photovoltaic effect in pure crystals," Physical Review B 23(10), 5590-5596 (1981).
    78. D. H. Auston and M. C. Nuss, "Electrooptical generation and detection of femtosecond electrical transients," Quantum Electronics, IEEE Journal of 24(2), 184-197 (1988).
    79. R. C. Miller, "Optical second harmonic generation in piezoelectric crystals," Applied Physics Letters 5(1), 17-19 (1964).
    80. G. Boyd and M. Pollack, "Microwave nonlinearities in anisotropic dielectrics and their relation to optical and electro-optical nonlinearities," Physical Review B 7(12), 5345 (1973).
    81. R. Sowade, I. Breunig, C. Tulea, and K. Buse, "Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime," Applied Physics B 99(1-2), 63-66 (2010).
    82. P. Liu, D. Xu, H. Jiang, Z. Zhang, K. Zhong, Y. Wang, and J. Yao, "Theory of monochromatic terahertz generation via Cherenkov phase-matched difference frequency generation in LiNbO3 crystal," Journal of the Optical Society of America B 29(9), 2425-2430 (2012).
    83. U. Schwarz and M. Maier, "Frequency dependence of phonon-polariton damping in lithium niobate," Physical Review B 53(9), 5074 (1996).
    84. S. K. Estreicher, T. M. Gibbons, B. Kang, and M. B. Bebek, "Phonons and defects in semiconductors and nanostructures: Phonon trapping, phonon scattering, and heat flow at heterojunctions," Journal of Applied Physics 115(1), 012012 (2014).
    85. T. Löffler, T. Hahn, M. Thomson, F. Jacob, and H. Roskos, "Large-area electro-optic ZnTe terahertz emitters," Optics express 13(14), 5353-5362 (2005).
    86. M. Naftaly and R. E. Miles, "Terahertz time-domain spectroscopy for material characterization," PROCEEDINGS-IEEE 95(8), 1658 (2007).
    87. R. Kitamura, L. Pilon, and M. Jonasz, "Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature," Applied optics 46(33), 8118-8133 (2007).
    88. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, "Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials," Journal of Applied Physics 109(4), 043505-043505-5 (2011).
    89. H. Němec, F. Kadlec, P. Kužel, L. Duvillaret, and J.-L. Coutaz, "Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy," Optics communications 260(1), 175-183 (2006).
    90. M. Scheller, C. Jansen, and M. Koch, "Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy," Optics Communications 282(7), 1304-1306 (2009).
    91. P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. De Maagt, "Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies," Microwave Theory and Techniques, IEEE Transactions on 51(4), 1062-1066 (2003).
    92. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, "Bendable, low-loss Topas fibers for the terahertz frequency range," Optics Express 17(10), 8592-8601 (2009).
    93. C. S. Ponseca Jr, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. Large, and M. A. van Eijkelenborg, "Transmission of terahertz radiation using a microstructured polymer optical fiber," Optics letters 33(9), 902-904 (2008).
    94. S. Adachi, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information. Springer Science & Business Media, 1999.
    95. D. Côté, N. Laman, and H. Van Driel, "Rectification and shift currents in GaAs," Applied physics letters 80(6), 905-907 (2002).
    96. M. Bieler, "THz generation from resonant excitation of semiconductor nanostructures: Investigation of second-order nonlinear optical effects," Selected Topics in Quantum Electronics, IEEE Journal of 14(2), 458-469 (2008).
    97. C.-W. Chen, Y.-S. Lin, J. Y. Huang, C.-S. Chang, C.-L. Pan, L. Yan, and C.-K. Lee, "Generation and spectral manipulation of coherent terahertz radiation with two-stage optical rectification," Optics express 16(18), 14294-14303 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE