研究生: |
吳光磊 Wu, Kuang-Lei |
---|---|
論文名稱: |
近光學作用腔處理矽晶片之研究與應用 Investigation of Processing Silicon Wafer in Quasi-Optical Applicator and Application |
指導教授: |
朱國瑞
Chu, Kwo-Ray |
口試委員: |
朱國瑞
Chu, Kwo-Ray 陳仕宏 陳寬任 劉偉強 寇崇善 張存續 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 微波加熱 、近光學共振腔 、材料處理 、快速加熱 、矽晶片 、HFSS電腦模擬 、負熱膨脹性 、玻璃陶瓷 |
外文關鍵詞: | Microwave Heating, Quasi-Optical Cavity, Materials Processing, Rapid Heating, Silicon Wafer, HFSS Simulation, Negative Thermal Expansion, Glass-Ceramics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
There are a lot of advantages in microwave heating including energy saving, rapid and selective heating, less pollution, etc. Because of these advantages, microwave heating gradually become a new technique to provide alternative approaches for materials processing. Presently most of applicators for microwave processing of materials are enclosed chambers which have some limitation. To eliminate these limitations, quasi-optical (QO) applicator was designed and applied.
Heat treatment of silicon wafers is an important process in the fabrications of MEMS (micro-electro-mechanical-system), solar cells and so on. Otherwise silicon has the strong absorption of microwave energy and low price. Thus silicon wafers are proper to be substrates loaded with materials which have week absorption of microwave. In this thesis, the temperature dependences in silicon and QO applicator were investigated qualitatively during the heating process, including the conductivity, absorbed power of silicon wafers and the variations of the field in QO resonator.
Finally as a trial application, negative thermal expansion glass-ceramics was sintered in QO applicator and it was confirmed that the processed negative thermal expansion glass-ceramics has the required crystalline phase of β-spodumene through the XRD (X-ray diffraction) pattern.
[1] J. M. Osepchuk, IEEE Trans. Microwave Tech., Vol. MTT-32, No. 9, p. 1200, 1984.
[2] Committee on microwave processing of materials, Microwave Processing of Materials, National Academy Press, 1994.
[3] E. D. Neas, M. J. Collins, Microwave Heating-Theoretical Concepts and Equipment Design, American Chemical Society, 1988.
[4] D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, S. W. Kingman, N. J. Miles, Microwave Heating Application in Environmental Engineering - a Review, Resources, Conservation and Recycling, Vol. 34, No. 2, pp. 75-90, 2002.
[5] K. R. Chu, L. R. Barnett, T. H. Chang, H. Y. Chang, W. Y. Chiang, L. C. Tai, C. F. Yu, A New Microwave Applicator for Materials Processing, Industrial materials Magazine, Vol. 216, pp. 77-80, 2004.
[6] G. Link, L. Feher, M. Thumm, H. J. Ritzhaupt-Kleissl, R. Bohme, A. Weisenburger, Sintering of Advanced Ceramics Using A 30-GHz, 10-kW, CW Industrial Gyrotron, IEEE Trans. Plasma Sci., Vol. 27, No. 2, pp. 547-554, 1999.
[7] R.F. Service, Electronic Textiles Charge Ahead, Science, Vol. 301, pp. 909-911, 2003.
[8] A. Copty, F. Sakran, M. Golosovsky, D. Davidov, Low-Power Near Field Microwave Applicator for Localized Heating of Soft Matter, Appl. Phys. Lett., Vol. 84, No. 25, pp. 5109-5111, 1999.
[9] A. E. Siegman, Lasers, University Science Books, Chapters 14-17, 1986.
[10] T. Matsui, K. Araki, M. Kiyokawa, Gaussion-Beam Open Resonator with Highly Reflective Circular Coupling Regions, IEEE Trans. Microwave Theory Tech., Vol. 41, No. 10, pp. 1710-1714, 1993.
[11] F. I. Shimabukuro, S. Lazar, M. Chernick, H. B. Dyson, A Quasi-Optical Method for Measuring the Complex Permittivity of Materials, IEEE Trans. Microwave Theory Tech. Vol. MTT-32, No. 7, pp. 659-665, 1984.
[12] T. Keith, B. G. Yogesh, B. John, F. C. Reid, Direct Silicon-Silicon Bonding by Electromagnetic Induction Heating, J. MEMS, Vol. 11, No. 4, pp.285-292, 2002.
[13] J. T. Verdeyen, Laser Electronics 3rd edition, Pearson, Chapters 3-6, 1989.
[14] K. R. Chu, Context for Electrodynamics (I), Chapter 7.
[15] P.W. McMillan, Glass-Ceramic, 2nd edition (Non-Metallic Solids: Vol. 1), Academic Press Inc, 1979.
[16] W. Hölland, G. Beal, Glass-Ceramic Technology, American Ceramic Society, pp. 403-445, 2002.
[17] Z. Strnad, Glass-Ceramic Materials, Glass Sci. Tech., Vol. 8, p. 190, 1986.
[18] W. Pannhorst, Glass-ceramics: State-of-the-Art, J. Non-Cryst. Solids, Vol. 219, No. 1, pp. 198-204, 1997.
[19] J. S. O. Evans, Negative thermal expansion materials, J. Chem. Soc., Dalton Trans., pp. 3317-3326, 1999.
[20] J. N. Grima, V. Zammit, R. Gatt, Negative Thermal Expansion, Xjenza 11, pp. 17-29, 2006.
[21] R. D. Rawlings, J. P. Wu, A. R. Boccaccini, Glass-Ceramics: Their Production from Wastes. A Review, J. Mater. Sci., Vol. 41, pp. 733-761, 2006.
[22] D. Arindam, I. Ahmad, E. D. Whitney, D. E. Clark, Effect of Green Microstructure and Processing Variables on the Microwave Sintering of Alumina, Mater. Res. Soc., Vol. 189, pp. 283-288, 1991.
[23] S. Das, A. K. Mukhopadhyay, S. Datta, D. Basu, Prospects of Microwave Processing: An Overview, Bull. Mater. Sci., Vol. 32, No. 1, pp. 1-13, 2009.
[24] M. A. Janney, H. D. Kimrey, Diffusion-Controlled Processes in Microwave-Fired Oxide Ceramics, Mater. Res. Soc., Vol. 189, pp. 215-227, 1991.
[25] M. Willert-Porada, A Microstructural Approach to the Origin of Microwave Effects in Sintering of Ceramics and Composites, Microwaves: Theory and Application in Materials Processing IV, pp. 153-163, 1997.
[26] F. J. Morin, J. P. Maita, Phys. Rev., Vol. 94, p. 1525, 1954.
[27] W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves, D. L. McElroy, Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Silicon from 100 to 1300 K, Phys. Rev., Vol. 167, pp. 765-782, 1968.
[28] Y. A. Cengel, Heat and Mass Transfer: A Practical Approach 3rd edition (SI Units), McGraw-Hill, p. 285, 2007.
[29] S. C. Jain, S. K. Agarwal, W. N. Borle, S. Tata, Total Emissivity of Silicon at High Temperatures, J. Phys. D: Appl. Phys., Vol. 4, pp. 1207-1209, 1971.
[30] http://www.ioffe.ru/SVA/NSM/Semicond/Si/