簡易檢索 / 詳目顯示

研究生: 黃冠勳
Huang, Kuan Hsun
論文名稱: Stereocontrolled Synthesis of Prostaglandin via Multicomponent Anion-Relay Strategy
Stereocontrolled Synthesis of Prostaglandin via Multicomponent Anion-Relay Strategy
指導教授: 磯部稔
Isobe, Minoru
汪炳鈞
Uang, Biing Jiun
口試委員: 廖俊臣
Liao, Chun Chen
謝興邦
Hsieh, Hsing Pang
陳建添
Chen, Chien Tien
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 314
中文關鍵詞: 異原子誘導共軛加成前列腺素有機鋅化合物不對稱醛醇反應Brook重排反應一鍋化反應
外文關鍵詞: Heteroatom-directed conjugate addition, Prostaglandin, Organozincate, Symmetric aldol reaction, Brook rearrangement, One-pot reaction
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主題為合成 (±)-15-deoxy-Prostaglandin E2 以及 (-)-Prostaglandin E2 methyl ester。 此合成之主要策略為: (i) 利用雷福馬斯基之不對稱醛醇反應建立C11之立體中心; (ii) 利用異原子誘導共軛加成(HADCA)反應建立高立體選擇性之產物; iii) Brook重排反應; (iv) 分子內環化反應。其中(ii)-(iv) 可藉由一鍋化反應而得到具多官能基之五圓環產物。此五圓環產物可再與前列腺素的支鏈進行烷基化反應,之後再藉由去磺酸酯化反應以及去矽烷基反應可合成天然物(±)-15-deoxy-Prostaglandin E2以及 (-)-Prostaglandin E2 methyl ester。此反應總產率分別為34%和24%。本研究同時也探討利用苯硫基作為在不對稱炔類之引導官能基用於進行高位向選擇性的矽氫化反應。


    Two total syntheses of (±)-15-deoxy-Prostaglandin E2 and (-)-Prostaglandin E2 methyl ester are completed through heteroatom-directed conjugate addition (HADCA). The key steps in this strategy are (i) Samarium-Reformatsky asymmetric aldol reaction; (ii) substrate control HADCA reaction in highly stereoselective manner; (iii) 1,4-Brook rearrangement; (iv) intramolecular cyclization to produce cyclopentanone, especially, (ii)-(iv) were achieved in one-pot reaction. Alkylation of the α-side chain with ketosulfone then followed by desulfonylation and desilylation afforded the (±)-15-deoxy-PGE2 and (-)-PGE2 methyl ester in 34% and 24% yield respectively. Highly regioselective hydrosilylation of unsymmetric alkynes using phenylthio moiety as directing group and also discussed in this dissertation.

    Index Abstract i Abstract (中文摘要) ii Acknowledgments iii Abbreviations iv Table Index vii Figure Index viii Chapter I Introduction 1 1.1 Introduction of Prostaglandins 1 1.1.1 Historical Background 1 1.1.2 Corey’s Typical Prostaglandin Syntheses 2 1.1.3 Alternative Routes to Prostaglandins 4 1.2 Introduction of Hetero-Atom-Directed Conjugate Addition 10 1.2.1 Conjugate Addition of Carbon Nucleophile to The Vinyl Silylsulfone System (HADCA) 11 1.2.2 Multifunctionalized Cyclobutane Synthesis by Exploiting HADCA 14 1.2.3 Conjugate Addition by Organozincate 17 Chapter II Research Motif 20 Chapter III Results and Discussion 22 3.1 Synthesis of Prostaglandin Precursors 22 3.2 Improvement of Cobalt-Assisted Hydrosilylation on Acetylene Moiety for Synthesis of Prostaglandin 24 3.2.1 Hydrosilylation of Phenylthio Propargyloxy Substrates with Primary Alcohol 115, 129a-f and Its Derivatives 26 3.2.2 Hydrosilylation of Phenylthio Propargyloxy Substrates with Secondary Alcohols and Its Derivatives. 27 3.2.3 Hydrosilylation of Phenylthio Acetylene Derivatives 29 3.2.4 Hydrosilylation on Sulfinyl- and Sulfonyl Acetylenes 30 3.2.5 Plausible Reaction Mechanism for Cobalt-Catalyzed Hydrosilylation 31 3.2.6 Improvement of Regioselectivity for Prostaglandin Precursor 35 3.3 Functionalized Cyclopentanones Synthesis via HADCA and Anion Relay Chemistry 35 3.4 Four-Component Strategy for Total synthesis of (±)-15-deoxyl Prostaglandin E2 40 3.5 Mechanism of HADCA 42 3.6 Functionalized Cyclopentanones Synthesis via Zincate HADCA 45 3.7 Some Unexpected Results in the Model Study of HADCA with tert-Butyl Ester Vinylsilylsulfone 106 and Weinreb Amide Vinylsulfone 151 50 3.8 Synthesis of (-) Prostaglandin E2 Methyl Ester 59 3.8.1 Asymmetric Samarium-Reformatsky Reaction for Establishing Stereocenter of 11-(R)-Hydroxy of Prostaglandin Subunit 59 3.8.2 The Synthesis of Chiral 15-(S)-Hydroxy Vinyl iodide for PG chain 61 3.8.3 (-) Prostaglandin E2 Methyl Ester Synthesis via HADCA 63 Chapter IV Conclusion 67 Chapter V General Experimental Details 69 References and Notes 135 Appendix I. Spectra Data Section 139 Appendix II. X-ray Crystallographic Data 294  

    References and Notes
    (1) Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis: Targets, Structure and Methods; VCH, Weinheim, Germany, 1996.
    (2) MacMurry, J.; Begley, T. P. The Organic Chemistry of Biological Pathways; Roberts: Englewood, Colo, 2005.
    (3) Hart, D. J. Organic Synthesis Via Examination of Selected Natural Products; World Scientific, 2011.
    (4) Collins, P. W.; Djuric, S. W. Chem. Rev. 1993, 93, 1533.
    (5) Corey, E. J.; Weinshenker, N. M.; Schaaf, T. K.; Huber, W. J. Am. Chem. Soc. 1969, 91, 5675.
    (6) Corey, E. J.; Ensley, H. E. J. Am. Chem. Soc. 1975, 97, 6908.
    (7) Corey, E. J.; Imai, N.; Pikul, S. Tetrahedron Lett. 1991, 32, 7517.
    (8) Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C. P.; Singh, V. K. J. Am. Chem. Soc. 1987, 109, 7925.
    (9) Iguchi, S.; Nakai, H.; Hayashi, M.; Yamamoto, H.; Maruoka, K. Bull. Chem. Soc. Jpn. 1981, 54, 3033.
    (10) Noyori, R.; Tomino, I.; Nishizawa, M. J. Am. Chem. Soc. 1979, 101, 5843.
    (11) Sih, C. J.; Salomon, R. G.; Price, P.; Peruzzoti, G.; Sood, R. J. Chem. Soc., Chem. Commun. 1972, 240b.
    (12) Sih, C. J.; Price, P.; Sood, R.; Salomon, R. G.; Peruzzotti, G.; Casey, M. J. Am. Chem. Soc. 1972, 94, 3643.
    (13) Rodríguez, A.; Nomen, M.; Spur, B. W.; Godfroid, J.-J. Eur. J. Org. Chem. 1999, 1999, 2655.
    (14) Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 6260.
    (15) Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 4745.
    (16) Suzuki, M.; Kawagishi, T.; Noyori, R. Tetrahedron Lett. 1982, 23, 5563.
    (17) Suzuki, M.; Yanagisawa, A.; Noyori, R. J. Am. Chem. Soc. 1988, 110, 4718.
    (18) Suzuki, M.; Morita, Y.; Koyano, H.; Koga, M.; Noyori, R. Tetrahedron 1990, 46, 4809.
    (19) Suzuki, M.; Yanagisawa, A.; Noyori, R. J. Am. Chem. Soc. 1985, 107, 3348.
    (20) Suzuki, M.; Koyano, H.; Morita, Y.; Noyori, R. Synlett 1989, 22.
    (21) Takahashi, T.; Nakazawa, M.; Takatori, K.; Nishimura, S.; Yamamoto, K. Nat. Prod. Lett. 1993, 1, 263.
    (22) Tokoroyama, T. Eur. J. Org. Chem. 2010, 2009.
    (23) Brahmachari, G. Natural Products : Chemistry, Biochemistry and Pharmacology; Alpha Science International Ltd.: Oxford, U.K., 2009.
    (24) Tanikaga, R.; Sugihara, H.; Tanaka, K.; Kaji, A. Synthesis 1977, 299.
    (25) Germain, N.; Schlaefli, D.; Chellat, M.; Rosset, S.; Alexakis, A. Org. Lett. 2014, 16, 2006.
    (26) Raucher, S.; Koolpe, G. A. J. Org. Chem. 1978, 43, 4252.
    (27) Miyashita, M.; Yanami, T.; Yoshikoshi, A. J. Am. Chem. Soc. 1976, 98, 4679.
    (28) Stork, G.; Ganem, B. J. Am. Chem. Soc. 1973, 95, 6152.
    (29) Boeckman, R. K. J. Am. Chem. Soc. 1974, 96, 6179.
    (30) Stork, G.; Singh, J. J. Am. Chem. Soc. 1974, 96, 6181.
    (31) Isobe, M. Pure Appl. Chem. 2013, 85, 1149.
    (32) Hamajima, A.; Isobe, M. Angew. Chem. Int. Ed. 2009, 48, 2941.
    (33) Isobe, M.; Obeyama, J.; Funabashi, Y.; Goto, T. Tetrahedron Lett. 1988, 29, 4773.
    (34) Ichikawa, Y.; Isobe, M.; Bai, D.; Goto, T. Tetrahedron 1987, 43, 4737.
    (35) Ichikawa, Y.; Tsuboi, K.; Jiang, Y.; Naganawa, A.; Isobe, M. Tetrahedron Lett. 1995, 36, 7101.
    (36) Kitamura, M.; Isobe, M.; Ichikawa, Y.; Goto, T. J. Org. Chem. 1984, 49, 3517.
    (37) Kitamura, M.; Isobe, M.; Ichikawa, Y.; Goto, T. J. Am. Chem. Soc. 1984, 106, 3252.
    (38) Isobe, M.; Kitamura, M.; Goto, T. Tetrahedron Lett. 1979, 3465.
    (39) Isobe, M.; Kitamura, M.; Goto, T. Tetrahedron Lett. 1980, 21, 4727.
    (40) Isobe, M.; Kitamura, M.; Goto, T. Chem. Lett. 1982, 1907.
    (41) Isobe, M.; Ichikawa, Y.; Goto, T. Tetrahedron Lett. 1986, 27, 963.
    (42) Isobe, M.; Jiang, Y. Tetrahedron Lett. 1995, 36, 567.
    (43) Isobe, M.; Ichikawa, Y.; Funabashi, Y.; Mio, S.; Goto, T. Tetrahedron 1986, 42, 2863.
    (44) Jiang, Y.; Isobe, M. Tetrahedron 1996, 52, 2877.
    (45) Adachi, M.; Yamauchi, E.; Komada, T.; Isobe, M. Synlett 2009, 1157.
    (46) Knochel, P. Handbook of Functionalized Organometallics: Applications in Synthesis; Wiley-VCH Weinheim, 2005.
    (47) Isobe, M.; Kondo, S.; Nagasawa, N.; Goto, T. Chem. Lett. 1977, 679.
    (48) Kjonaas, R. A.; Hoffer, R. K. J. Org. Chem. 1988, 53, 4133.
    (49) Isobe, M.; Chiang, C.-T.; Tsao, K.-W.; Cheng, C.-Y.; Bruening, R. Eur. J. Org. Chem. 2012, 2109.
    (50) Hirao, T.; Takada, T.; Sakurai, H. Org. Lett. 2000, 2, 3659.
    (51) Harada, T.; Wada, H.; Oku, A. J. Org. Chem. 1995, 60, 5370.
    (52) Harada, T.; Katsuhira, T.; Hara, D.; Kotani, Y.; Maejima, K.; Kaji, R.; Oku, A. J. Org. Chem. 1993, 58, 4897.
    (53) Uchiyama, M.; Kameda, M.; Mishima, O.; Yokoyama, N.; Koike, M.; Kondo, Y.; Sakamoto, T. J. Am. Chem. Soc. 1998, 120, 4934.
    (54) Uchiyama, M.; Koike, M.; Kameda, M.; Kondo, Y.; Sakamoto, T. J. Am. Chem. Soc. 1996, 118, 8733.
    (55) Tojo, S.; Isobe, M. Tetrahedron Lett. 2005, 46, 381.
    (56) Tsao, K.-W.; Isobe, M. Org. Lett. 2010, 12, 5338.
    (57) Isobe, M.; Niyomchon, S.; Cheng, C.-Y.; Hasakunpaisarn, A. Tetrahedron Lett. 2011, 52, 1847.
    (58) Isobe, M.; Nishizawa, R.; Nishikawa, T.; Yoza, K. Tetrahedron Lett. 1999, 40, 6927.
    (59) Kraff, M. E.; Scott, I. L.; Romero, R. H. Tetrahedron Lett. 1992, 33, 3829.
    (60) Krafft, M. E.; Scott, I. L.; Romero, R. H.; Feibelmann, S.; Van Pelt, C. E. J. Am. Chem. Soc. 1993, 115, 7199.
    (61) Solà, J.; Riera, A.; Pericàs, M. A.; Verdaguer, X.; Maestro, M. A. Tetrahedron Lett. 2004, 45, 5387.
    (62) Sato, F.; Kanbara, H.; Tanaka, Y. Tetrahedron Lett. 1984, 25, 5063.
    (63) Sato, F.; Watanabe, H.; Tanaka, Y.; Yamaji, T.; Sato, M. Tetrahedron Lett. 1983, 24, 1041.
    (64) Sato, F.; Katsuno, H. Tetrahedron Lett. 1983, 24, 1809.
    (65) Sato, F.; Watanabe, H.; Tanaka, Y.; Sato, M. J. Chem. Soc., Chem. Commun. 1982, 1126.
    (66) Johnson, C. R.; Penning, T. D. J. Am. Chem. Soc. 1988, 110, 4726.
    (67) Kürti, L.; Czak, B. Strategic Applications of Named Reactions in Organic Synthesis; Elsevier Amsterdam, 2005.
    (68) Akindele, T.; Yamada, K.-I.; Tomioka, K. Acc. Chem. Res. 2008, 42, 345.
    (69) Fukuzawa, S.-I.; Matsuzawa, H.; Yoshimitsu, S.-I. J. Org. Chem. 2000, 65, 1702.
    (70) Davies, S. G.; Sanganee, H. J.; Szolcsanyi, P. Tetrahedron 1999, 55, 3337.
    (71) Bull, S. D.; Davies, S. G.; Jones, S.; Polywka, M. E.; Prasad, R. S.; Sanganee, H. J. Synlett 1998, 519.
    (72) D. Bull, S.; G. Davies, S.; Jones, S.; J. Sanganee, H. J. Chem. Soc., Perkin Trans. 1 1999, 387.
    (73) Gibson, C. L.; Gillon, K.; Cook, S. Tetrahedron Lett. 1998, 39, 6733.
    (74) Kusumi, T.; Ooi, T.; Ohkubo, Y.; Yabuuchi, T. Bull. Chem. Soc. Jpn. 2006, 79, 965.
    (75) Seco, J. M.; Quiñoá, E.; Riguera, R. Tetrahedron: Asymmetry 2000, 11, 2781.
    (76) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
    (77) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
    (78) Huang, C.-C., Master thesis, National Tsing Hua University, Taiwan, 2013.
    (79) Luo, F. T.; Negishi, E. J. Org. Chem. 1985, 50, 4762.
    (80) Corey, E. J.; Bakshi, R. K. Tetrahedron Lett. 1990, 31, 611.
    (81) Chein, R.-J.; Yeung, Y.-Y.; Corey, E. J. Org. Lett. 2009, 11, 1611.
    (82) Huang, K.-H.; Isobe, M. Eur. J. Org. Chem. 2014, 4733.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE