簡易檢索 / 詳目顯示

研究生: 陳英傑
Chen, Ying-Chieh
論文名稱: Srv2蛋白在酵母菌粒線體的動態平衡所扮演的角色
The Role of Srv2 in Yeast Mitochondrial Fusion and Fission Regulation
指導教授: 張壯榮
Chang, Chuang-Rung
口試委員: 呂俊毅
彭明德
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 53
中文關鍵詞: 粒線體肌動蛋白細胞凋亡
外文關鍵詞: mitochondria, actin, apoptosis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Mitochondria fusion and fission regulatory pathways are not yet completely understood. Mitochondrial dynamics via fission (Dnm1) and fusion (Fzo1) pathways has been demonstrated in yeast Saccharomyces cerevisiae. Our lab have identified a novel protein Srv2 that interacts with Dnm1. Srv2 is a protein with multifunctional domains; the N-terminal Srv2 encodes the adenylate cyclase activation domain, which is involved in Ras signaling pathway, and the C-terminal Srv2 encodes an actin monomer binding domain which is involved in actin recycling. In this thesis, I aim to clarify the role of Srv2 in mitochondrial fusion and fission pathways. I used mtGFP to label mitochondria and analyzed the status of mitochondrial dynamics. Deletion of SRV2 causes mitochondrial fragmentation. The fragmented phenotype depends on the conventional fission protein Dnm1 and can be compensated by ectopic Srv2 expression. The genes deletion results indicated that Srv2 may not depend on the Ras signaling pathway to regulate mitochondrial dynamics. In addition, the disruption of Srv2 and actin interaction by mutagenesis had similar mitochondrial fragmentation as SRV2 deletion. Thus, it is highly possible that Srv2 affects mitochondrial fusion and fission through its interaction with actin. Although the detail mechanisms of how Srv2 affects mitochondrial dynamics remain to be clarify, my results indicate that Srv2 is a novel regulatory protein of mitochondrial fusion and fission.


    粒線體透過分裂和融合的過程達到動態平衡而在細胞體內形成不同的形態,不同的平衡狀態也影響了粒線體的功能。我們以酵母菌(Saccharomyces cerevisiae)為模式生物,利用蛋白交互作用的實驗發現了一個與粒線體動態平衡有關的蛋白Srv2。Srv2是一個具有多個功能性區域(functional domain)的蛋白,其N端為具有活化adenylyl cyclase的區域,可以調控一個與酵母菌細胞凋亡(apoptosis)有關的途徑(Ras signaling pathway)。C端為具有與肌動蛋白結合能力的區域,與肌動蛋白的回收(actin recycling)有關。我們以能夠標定粒線體的螢光蛋白(mtGFP)來觀察粒線體動態平衡之後的的形態,並分別針對Ras signaling及actin recycling兩個途徑,利用調控基因表現、基因剔除的方式來釐清Srv2調控粒線體的動態平衡的方式。我們發現剔除SRV2會使細胞中片斷狀的粒線體增加,而此一影響必須透過粒線體分裂蛋白Dnm1來達成。我們的實驗結果初步排除了Srv2透過Ras signaling pathway調控下游之蛋白質進而調控粒線體的動態平衡的可能性;剔除SRV2所造成的碎片狀粒線體與此蛋白與肌動蛋白的交互做用有密切關係。我們針對SRV2基因對粒線體融合與分裂的影響所做的實驗證明粒線體的動態平衡的確受到嚴謹的調控,雖然Srv2在此一機制中的詳盡角色仍需更進一步的探討,但Srv2確為此一機制中新發現的一份子。

    口試委員會審定書 # 誌謝 ii 中文摘要 iv ABSTRACT v CONTENTS vi LIST OF FIGURES x LIST OF TABLES xii Chapter 1 Introduction 1 Chapter 2 Material and methods 4 2.1 Growth rate measurement 4 2.2 Yeast Protein sample preparation 4 2.3 SDS-PAGE and western blotting 4 2.4 Yeast transformation and genetic manipulation 5 2.5 Strain construction 6 2.6 Phalloidin staining 6 2.7 Plasmid Cloning 6 2.8 Yeast fixation 8 2.9 Site directed mutagenesis 8 2.10 The classification of mitochondrial morphology 9 Chapter 3 Results 10 3.1 Srv2 plays important roles in regulating yeast mitochondrial morphology 10 3.1.1 SRV2 deletion results in aberrant phenotypes 10 3.2 Srv2 altered mitochondrial morphology through conventional fusion and fission pathways 12 3.3 Overexpress truncated Srv2 in Δsrv2 fails to restore tubular mitochondrial morphology 13 3.4 Pde2 and Tpk3 are not directly involved in regulating mitochondrial fusion and fission 15 3.5 Actin dependent regulatory pathway 17 3.5.1 WH2 domain mutation caused similar mitochondrial morphology as Δsrv2 17 Chapter 4 Discussion 19 4.1 Srv2 is involved in regulatory pathway of mitochondrial dynamics 19 4.2 cAMP/ PKA signaling pathway does not involved in Srv2 regulated mitochondrial dynamics 20 4.3 Srv2 may regulate mitochondrial dynamics through actin recycling 20 Chapter 5 Perspective 22 Appendix 48 REFERENCE 51

    Bach D, Naon D, Pich S, Soriano FX, Vega N, Rieusset J, Laville M, Guillet C, Boirie Y, Wallberg-Henriksson H, Manco M, Calvani M, Castagneto M, Palacin M, Mingrone G, Zierath JR, Vidal H, Zorzano A (2005) Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes 54:2685-2693.
    Balcer HI, Goodman AL, Rodal AA, Smith E, Kugler J, Heuser JE, Goode BL (2003) Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1. Curr Biol 13:2159-2169.
    Bereiter-Hahn J, Voth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198-219.
    Bertling E, Quintero-Monzon O, Mattila PK, Goode BL, Lappalainen P (2007) Mechanism and biological role of profilin-Srv2/CAP interaction. J Cell Sci 120:1225-1234.
    Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J, Shaw JM (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1:298-304.
    Boldogh IR, Yang HC, Pon LA (2001) Mitochondrial inheritance in budding yeast. Traffic 2:368-374.
    Bras M, Queenan B, Susin SA (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc) 70:231-239.
    Cerveny KL, Studer SL, Jensen RE, Sesaki H (2007) Yeast mitochondrial division and distribution require the cortical num1 protein. Dev Cell 12:363-375.
    Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241-1252.
    Chan DC (2007) Mitochondrial dynamics in disease. N Engl J Med 356:1707-1709.
    Chang CR, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282:21583-21587.
    Chaudhry F, Little K, Talarico L, Quintero-Monzon O, Goode BL (2010) A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover in vitro and in vivo. Cytoskeleton (Hoboken) 67:120-133.
    Chen H, Chan DC (2009) Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet 18:R169-176.
    Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870-879.
    Frederick RL, Shaw JM (2007) Moving mitochondria: establishing distribution of an essential organelle. Traffic 8:1668-1675.
    Fritz S, Rapaport D, Klanner E, Neupert W, Westermann B (2001) Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion. J Cell Biol 152:683-692.
    Fukushima NH, Brisch E, Keegan BR, Bleazard W, Shaw JM (2001) The GTPase effector domain sequence of the Dnm1p GTPase regulates self-assembly and controls a rate-limiting step in mitochondrial fission. Mol Biol Cell 12:2756-2766.
    Gourlay CW, Ayscough KR (2006) Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae. Mol Cell Biol 26:6487-6501.
    Griffin EE, Graumann J, Chan DC (2005) The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. J Cell Biol 170:237-248.
    Hermann GJ, Shaw JM (1998) Mitochondrial dynamics in yeast. Annu Rev Cell Dev Biol 14:265-303.
    Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT, Nunnari J, Shaw JM (1998) Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J Cell Biol 143:359-373.
    Hoppins S, Horner J, Song C, McCaffery JM, Nunnari J (2009) Mitochondrial outer and inner membrane fusion requires a modified carrier protein. J Cell Biol 184:569-581.
    Ishibashi H, Shimoda S, Gershwin ME (2005) The immune response to mitochondrial autoantigens. Semin Liver Dis 25:337-346.
    Koirala S, Bui HT, Schubert HL, Eckert DM, Hill CP, Kay MS, Shaw JM (2010) Molecular architecture of a dynamin adaptor: implications for assembly of mitochondrial fission complexes. J Cell Biol 191:1127-1139.
    Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799-845.
    Mattila PK, Quintero-Monzon O, Kugler J, Moseley JB, Almo SC, Lappalainen P, Goode BL (2004) A high-affinity interaction with ADP-actin monomers underlies the mechanism and in vivo function of Srv2/cyclase-associated protein. Mol Biol Cell 15:5158-5171.
    Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18:20-26.
    Merrill RA, Dagda RK, Dickey AS, Cribbs JT, Green SH, Usachev YM, Strack S (2011) Mechanism of Neuroprotective Mitochondrial Remodeling by PKA/AKAP1. PLoS Biol 9:e1000612.
    Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151:367-380.
    Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39:503-536.
    Otera H, Mihara K (2011) Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem 149:241-251.
    Quintero-Monzon O, Jonasson EM, Bertling E, Talarico L, Chaudhry F, Sihvo M, Lappalainen P, Goode BL (2009) Reconstitution and dissection of the 600-kDa Srv2/CAP complex: roles for oligomerization and cofilin-actin binding in driving actin turnover. J Biol Chem 284:10923-10934.
    Rapaport D, Brunner M, Neupert W, Westermann B (1998) Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J Biol Chem 273:20150-20155.
    Scheckhuber C, Osiewacz HD (2006) The role of mitochondria in conserved mechanisms of aging. Sci Aging Knowledge Environ 2006:pe15.
    Sesaki H, Jensen RE (1999) Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol 147:699-706.
    Sesaki H, Jensen RE (2004) Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion. J Biol Chem 279:28298-28303.
    Shults CW (2004) Mitochondrial dysfunction and possible treatments in Parkinson's disease--a review. Mitochondrion 4:641-648.
    Simon VR, Swayne TC, Pon LA (1995) Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface. J Cell Biol 130:345-354.
    Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20:3525-3532.
    Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577-1590.
    Sullivan PG, Brown MR (2005) Mitochondrial aging and dysfunction in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 29:407-410.
    Tieu Q, Okreglak V, Naylor K, Nunnari J (2002) The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J Cell Biol 158:445-452.
    Vandecasteele G, Szabadkai G, Rizzuto R (2001) Mitochondrial calcium homeostasis: mechanisms and molecules. IUBMB Life 52:213-219.
    Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J Neurosci 29:9090-9103.
    Wells RC, Picton LK, Williams SC, Tan FJ, Hill RB (2007) Direct binding of the dynamin-like GTPase, Dnm1, to mitochondrial dynamics protein Fis1 is negatively regulated by the Fis1 N-terminal arm. J Biol Chem 282:33769-33775.
    West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11:389-402.
    Wong ED, Wagner JA, Gorsich SW, McCaffery JM, Shaw JM, Nunnari J (2000) The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J Cell Biol 151:341-352.
    Zhang Y, Chan DC (2007) Structural basis for recruitment of mitochondrial fission complexes by Fis1. Proc Natl Acad Sci U S A 104:18526-18530.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE