研究生: |
曾柏勳 Po-Hsun Tseng |
---|---|
論文名稱: |
微接觸特性量測元件之開發與製作 Characterization of the micro contact resistance using a novel on-chip apparatus |
指導教授: |
方維倫
Weileun Fang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 射頻微開關 、接觸電阻 、表面粗糙度 |
外文關鍵詞: | RF-Switch, Contact Resistance, Surface Roughness |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微機電製程,開發獨創性之微接觸電阻量測裝置與方法,除可直接量測接觸電阻與微接觸力之關係外,更可量化在不同接觸次數下,接觸表面粗糙度的變化,因此;可針對接觸電阻與接觸介面間之關係進行量測與探討。除此之外;透過特殊校正方法,去除測試裝置結構與量測儀器寄生電阻與接面電阻,可直接量測接觸電阻值,大幅增加微接觸電阻量測的準確性。由測試結果顯示,隨著接觸次數增加,接觸電阻與接觸表面粗糙度亦隨之增加。透過此創新性之微接觸電阻量測裝置與寄生電阻校正方法開發,可針對微米尺度下接觸特性,進行定量化探討,並可將相關研究結果應用至射頻微機電開關與微型連接器,以改善接觸介面特性,確保電子訊號傳遞之可靠度。
This study demonstrates an on chip testing apparatus to determine the variation of contact resistance with the contact force as well as to quantify the change of contact surface roughness after certain contact cycles. Consequently, the relationship between contact resistance and interfacial roughness can be characterized. Moreover, the method to calibrate the parasitic resistance for the contact resistance measurement is presented. The resistance of the insulated film formed on the contact interfaces also can be extracted. The experimental results show that mechanical cycling causes an increase in contact resistance and interfacial roughness. In summary, the present on chip apparatus provides detailed information regarding the micro contact testing, and further enables the improvement of RF-MEMS switches and micro-connectors performances.
[1] 丁志銘等, “微機電系統技術與應用,” 行政院國家科學委員會精密儀器發展中心, pp.1167, 2003.
[2] J. B. Muldavin, “Inline Capacitive and DC-Contact MEMS Shunt Switches,” IEEE Microwave and Wireless Components Letters, v 11, pp. 334-336, 2001.
[3] S. Majumder, N. E. McGruer, G. G. Adams, A.. Zavracky, P. M. Zavracky, R. H. Morrison, and J. Krim;“Study of Contacts in An Electrostatically Actuated Microswitch,” Electrical Contacts, Proceedings of the Forty-fourth IEEE Holm Conference, pp. 127-132, 1998.
[4] S. Majumder, N. E. McGruer, G. G. Adams, A.. Zavracky, P. M. Zavracky, R. H. Morrison, and J. Krim; “Study of Contacts in An Electrostatically Actuated Microswitch,” Sens Actuators A, Phys, v 93, pp. 19-26, 2001.
[5] D. Hyman, and M. Mehregany, “Contact Physics of Gold Microcontacts for MEMS Switches,” IEEE Transaction on Components and Packaging Technology, v 22, pp. 357-364, 1999.
[6] B.D. Jensen, L. W. Chow, K. Huang, K. Saitou, J. L. Volakis, and K. Kurabayashi, “Effect of Nanoscale Heating on Electrical Transport in RF MEMS Switch Contacts,” Journal of Microelectromechanical Systems, v 14, pp. 935-946, 2005.
[7] B.D. Jensen, K. Huang, L. W. Chow, and K. Kurabayashi, “A Comparison of Micro-Switch Analytic, Finite Element, And Experimental Results,” Sens Actuators A, Phys, v 115, pp. 252-258, 2004.
[8] B. McCarthy, G. Adams, and N.E. McGruer, “A Dynamic Model, Including Contact Bounce, of An Electrostatically Actuated Microswitch,” Journal of Microelectromechanical Systems, v 11, pp. 276-283, 2002.
[9] B. D. Jensen, K. Huang, L. W. Chow, and K. Kurabayashi, “Adhesion Effects on Contact Opening Dynamics in Micromachined Switches,” Journal of Applied Physics, v 97, pp. 103535, 2005.
[10] G. L. Tan, and G. M. Rebeiz, “DC-26 GHz MEMS Series-Shunt Absorptive Switches,” IEEE MTT-S International Microwave Symposium Digest, v 3, pp. 325-328, 2001.
[11] J. Johnson., G. G. Adams, and N. E. McGruer, “Determination of Intermodulation Distortion in A Contact-Type MEMS Microswitch,” IEEE Transactions on Microwave Theory and Techniques, v 53, pp. 3615-3620, 2005.
[12] L. Ari, K. Lior, and K. Kyriakos, “Electrical Contact Resistance as a Diagnostic Tool for MEMS Contact Interfaces,” Journal of Microelectromechanical Systems, v 13, pp. 977-987, 2004.
[13] L. Kogut, and K. Komvopoulos, “Electromechanically Induced Transition from Nonohmic to Ohmic Behavior at Contact Interfaces” Applied Physics Letters, v 84, pp. 4842-4844, 2004.
[14] S. Majumder, N. E. McGruer, P. M. Zavracky, G. G. Adams, R. H. Morrison, and J. Krim, “Measurement And Modeling of Surface Micromachined, Electrostatically Actuated Microswitches,” International Conference on Solid-State Sensors and Actuators, v 2, pp. 1145-1148, 1997.
[15] P. M. Zavracky, S. Majumder, and N. E. McGruer, “Micromechanical Switches Fabricated Using Nickel Surface Micromachining,” Journal of Microelectromechanical Systems, v 6, pp. 3-9, 1997.
[16] H. F. Schlaak, “Potenials and Limits of Micro-Electromechanical Systems for Relays and Switches,” 21st International Conference on Electrical Contacts, pp. 9-12, 2002.
[17] X. Yan, N. E. McGruer, G. G. Adams, and S. Majumder, “Thermal Characteristics of Microswitch Contacts,” Appliance, v 59, pp. 72, 2002.
[18] M. Ruan, and J.Shen, “Latching Micro Magnetic Relays With Multistrip Permalloy Cantilevers,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 224-227, 2001.
[19] M. Ruan, J. Shen , and C. B. Wheeler, “Latching Microelectromagnetic Relays,” Sens Actuators A, Phys, v 91, pp. 346-350, 2001.
[20] R. A. M. Receveur, C. Marxer, F. Duport, R. Woering, V. Larik, and N. F. Rooij, “Laterally Moving Bi-Stable MEMS DC-Switch for Biomedical Applications,” Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 854-856, 2004.
[21] R. A. M. Receveur, C. R. Marxer, and R. Woering, Vincent C. M. H. Larik, and Nicolaas-F. de Rooij, “Laterally Moving Bistable MEMS DC Switch for Biomedical Applications,” Journal of Microelectromechanical Systems, v 14, pp. 1089-1098, 2005.
[22] L. Kogut.,and K. Komvopoulos, “Electrical Contact Resistance Theory for Conductive Rough Surfaces,” Journal of Applied Physics, v 94, pp. 3153-3162, 2003.
[23] W. Yan, and K. Komvopoulos, “Contact Analysis of Elastic-Plastic Fractal Surfaces,” Journal of Applied Physics, v 84, pp. 3617, 1998.
[24] B. Bhushan, ”Introduction to Tribology,” Journal of Engineering Tribology, v 220, n 8, pp. 649-656, 2006.
[25] L. Kogut, and K. Komvopoulos, “Electrical Contact Resistance Theory for Conductive Rough Surfaces Separated By A Thin Insulating Film,” Journal of Applied Physics, v 95, pp. 576-585, 2004.
[26] R. Holm, “Electric Contacts Handbook,” Springer-Verlag Berlin Heidelberg, 2000
[27] P. G. Slade, ”Electrical Contacts: Principles and Applications,” Marcel Dekker, Inc.,pp.38, 1999.
[28] R. S. Timsit, ”Some Fundamental Properties of Aluminum- Aluminum Electrical Contacts,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, v 3, pp. 71-79, 1980.
[29] D. Gupta, and P. S. Ho, “Diffusion Processes in Thin Films,” Solar Energy Materials and Solar Cells, v 54, pp. 363-368, 1998.
[30] R. S. Timsit, “The Connectibility Properties of Aluminum: Contact Fundamentals,” Canadian Electrical Association Report, pp. 76-19, 1976.
[31] http://www.memsnet.org/material/
[32] G. M. Rebeiz, ” RF MEMS : Theory, Design, and Technology,” John Wiley & Sons, pp. 194, 2003.
[33] S. Majumder, N. E. Mcgruer, P. M Zavracky, G. G. Adam, R. H. Morrison, and J. Krim, “Measurement and Modeling of Surface Micromachined Electro-Statically Actuated Microswitches,” in Int. Conf. Solid-State Sensors and Actuators, pp. 1145-1148, 1997.
[34] I. Etsion W. R. Chang, and D. B. Bogy, ”An Elastic-Plastic Model for the Contact of Rough Surfaces,” Journal of Engineering Tribology, v109, pp. 257-263, 1988.
[35] J. A. Greenwood, and J. B. Williamson, ”Contact of nominally flat surfaces,” in Proceedings of the Royal Society, v 295, pp. 300, 1996.
[36] R. Holm, “Electric Contacts Handbook,” Springer-Verlag Berlin Heidelberg, Inc., 2000.
[37] J. Schimkat, ”Contact Measurements Providing Basic Design Data for Microrelay Actuators,” Sens Actuators A, Phys, v 73, pp. 138-143, 1999.
[38] T. Smith, ”The Hydrophilic Nature of A Clean Gold Surface,” Journal of. Colloid Sci, v 75, 1990.