研究生: |
廖浩淳 Liao, Hao-Chun |
---|---|
論文名稱: |
(1) 掌性1,3-二㗁環戊-4-酮之不對稱麥可反應及其合成應用 (2) 釩氧化物促進樟腦醯胺衍生之甘胺酸酯之不對稱耦合反應 (1) Asymmetric Michael Additions of Chiral 1,3-Dioxolan-4-one and Their Synthetic Applications (2) Oxovanadium Species Mediated Asymmetric Coupling of Ketopinicamide Derived t-Butyl Glycinate |
指導教授: |
汪炳鈞
Uang, Biing-Jiun |
口試委員: |
陳建添
Chen, Chien-Tien 陳貴通 Tan, Kui-Thong 陳榮傑 Chein, Rong-Jie 吳學亮 Wu, Hsyueh-Liang |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 212 |
中文關鍵詞: | 掌性輔助基 、tofacitinib 、不對稱合成 、不對稱串聯反應 、不對稱氧化耦合反應 、樟腦衍生物 |
外文關鍵詞: | chiral auxiliary, tofacitinib, asymmetric methodology, asymmetric tandem reaction, asymmetric coupling, camphor derivative |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的內容分成三個部份,第一部份為樟腦磺醯胺衍生物之掌性1,3-二㗁環戊-4-酮化合物於不對稱tofacitinib的合成研究,第二部份利用相同的樟腦磺醯胺衍生物之掌性1,3-二㗁環戊-4-酮化合物於不對稱串聯反應之研究,第三部份研究釩金屬促進樟腦醯胺衍生物之掌性亞胺甘胺酸酯進行氧化耦合反應。
第一部份:我們以1,3-二㗁環戊-4-酮化合物36與巴豆酸甲酯的Michael加成產物52g為起始物完成藥物tofacitinib前驅物的不對稱合成,總合成步驟只需8步即可快速且有效率的得到具有光學活性之tofacitinib的前驅物75,總產率為26%,其中有效的使用苯甲胺在沒有溶劑的條件下將輔助基移除,並在最後經過中間不須純化的連續三個反應步驟合成前驅物75,而化合物75可由文獻已知方法再行3個反應步驟即可得到tofacitinib。
第二部份:由1,3-二㗁環戊-4-酮化合物36或38與α,β-不飽和酯進行Michael反應,先建立兩個連續的掌性中心後,再接著進行α-取代反應來得到第三個連續的掌性中心,其中前兩個掌性中心的建立皆可以達到大於98%非鏡像選擇性,第三個掌性中心分別可以有40/1到大於99/1與5/1到大於99/1的非鏡像選擇性;另外在一鍋化反應條件下進行Michael-allylation可以有效地得到與逐步反應相似的產率與非鏡像選擇性;除此之外,1,3-二㗁環戊-4-酮化合物38亦可與雙取代的α-甲基巴豆酸甲酯反應,搭配掌性化合物87提供質子可得到α-非鏡像選擇性反轉的產物,其非鏡像選擇性大於99/1。
第三部份:我們利用五價氧釩金屬促進樟腦醯胺衍生物84進行不對稱氧化耦合反應,其反應先經由烯醇硼中間體再藉由五價氧釩氧化後可以控制得到單一非鏡像選擇性自身氧化耦合產物,其自身氧化耦合產物97可以簡單地經由過濾收集,將化合物97水解去除輔助基後的雙胺產物98在有機合成上具有廣泛的應用性。
This thesis consists of three parts. The first part reports formal asymmetric synthesis of (+)-tofacitinib by camphor sulfonamide derived 1,3-dioxolan-4-one. The second part reports stereoselective cascade Michael-alkylation/oxidation reactions by the same 1,3-dioxolan-4-one. The third part focuses on oxovanadium(V) mediated asymmetric oxidative homo-coupling of boron enolate from camphor derived iminoglycinate.
Part I: We reported a concise formal asymmetric synthesis of (+)-tofacitinib from chiral 1,3-dioxolan-4-one 36, which was elaborated through a highly stereoselective Michael addition in 8 steps with 26% overall yield. The synthesis features a solvent-free removal of chiral auxiliary, a ring cyclization to furnish chiral imide 63 and a sequencial reactions (oxidation, reductive amination and SNAr reaction). The precursor cis-75 could be transformed to tofacitinib by a reported procedure in three steps.
Part II: Stereoselective Michael addition of 1,3-dioxolan-4-one with α,β-unsaturated ester followed by stepwise alkylation/oxidation could obtain α-hydroxy-1,3-diester subunit with three contiguous stereogenic centers in up to 91% yield and 99% de. Stereoselective cascade Michael-allylation 1,3-dioxolan-4-one 38 with methyl crotonate followed by allylation in one-pot could obtain the result similar to stepwise process. Inversion of stereochemistry at α-position could be achieved by using Michael acceptor equipped with a suitable group followed by a highly stereoselective protonation.
Part III: Conversion of iminoglycinate 84 to boron enolate followed by the treatment of oxovanadium reagent could furnish the homo-coupling product in one-pot. After optimization of the reaction condition, single enantiomer could be obtained with satisfactory yield. The homo-coupling product 97 could be collected by filtration, and the hydrolyzed diamino diester 98 is a useful subunit for further applications.
1. Pasteur, L. Ann. Chim. Physique 1848, 24, 442.
2. Seyden-penne J. In “Chiral Auxiliaries and Ligand in Asymmetric Synthesis”, John-Wiley and sons, New York, 1995.
3. a) “Reagents, Catalysts and Building Blocks for Enatioseletive Synthesis Resolving Agent” Merck’s Chiralica. b) Calne, D.B.: Sandlar, M. Nature 1970, 226, 21.
4. Changelian, P. S.; Flanagan, M. E.; Ball, D. J.; Kent, C. R.; Magnuson, K. S.; Martin, W. H.; Rizzuti, B. J.; Sawyer, P. S.; Perry, B. D.; Brissette, W. H.; McCurdy, S. P.; Kudlacz, E. M.; Conklyn, M. J.; Elliot, E. A.; Koslov, E. R.; Fisher, M. B.; Strelevitz, T. J.; Yoon, K.; Whipple, D. A.; Sun, J.; Munchhof, M. J.; Doty, J. L.; Casavant, J. M.; Blumenkopf, T. A.; Hines, M.; Brown, M. F.; Lillie, B. M.; Subramanyam, C.; Shang-Poa, C.; Milici, A. J.; Beckius, G. E.; Moyer, J. D.; Su, C.; Woodworth, T. G.; Gaweco, A. S.; Beals, C. R.; Littman, B. H.; Fisher, D. A.; Smith, J. F.; Zagouras, P.; Magna, H. A.; Saltarelli, M. J.; Johnson, K. S.; Nelms, L. F.; Des Etages, S. G.; Hayes, L. S.; Kawabata, T. T.; Finco-Kent, D.; Baker, D. L.; Larson, M.; Si, M.-S.; Paniagua, R.; Higgins, J.; Holm, B.; Reitz, B.; Zhoa, Y.-J.; Morris, R. E.; O’Shea, J. J.; Borie, D. C. Prevention of Organ Allograft Rejection by a Specific Janus Kinase 3 Inhibitor. Science 2003, 302, 875.
5. a) Kulagowski, J. J.; Blair, W.; Bull, R. J.; Chang, C.; Deshmukh, G.; Dyke, H. J.; Eigenbrot, C.; Ghilardi, N.; Gibbons, P.; Harrison, T. K.; Hewitt, P. R.; Liimatta, M.; Hurley, C. A.; Johnson, A.; Johnson, T.; Kenny, J. R.; Bir Kohli, P.; Maxey, R. J.; Mendonca, R.; Mortara, K.; Murray, J.; Narukulla, R.; Shia, S.; Steffek, M.; Ubhayakar, S.; Ultsch, M.; Van Abbema, A.; Ward, S. I.; Waszkowycz, B.; Zak, M. J. Med. Chem. 2012, 55, 590. b) Blumenkopf, T. A.; Flanagan, M. E.; Munchhof, M. J. U.S. Patent USRE41783E, 2010. c) Flanagan, M. E.; Munchhof, M. J. U.S. Patent US7301023B2, 2007. d) Ernest, W. G.; Christian, K.; Ton, V.; Edward, F. M.; Munchhof, M. J. PCT WO 02096909, 2002. e) Stavber, G.; Cluzean, J. PCT WO 2014016338A1, 2014. f) Kristin, E. P.; Claude, L.-A.; Brett, M. L.; Robert, W. M.; Jason, M.; Kevin, W. H.; Jeol, M. H.; Rajappa, V. Org. Lett. 2009, 11, 200. g) Ruggeri, S. G.; Hawkins, J. M.; Makowski, T. M.; Rutherford, J. L.; Urban, F. J. PCT WO 2007012953, 2007. h) Rao, T. S.; Zhang, C. PCT WO 2010123919, 2010. i) Iorio, M. A.; Ciuffa, P.; Damia, G. Tetrahedron 1970, 26, 5519. j) Brown Ripin, D. H.; Abele, S.; Cai, W.; Blumenkopf, T.; Casavant, J. M.; Doty, J. L.; Flanagan, M.; Koecher, C.; Laue, K. W.; McCarthy, K.; Meltz, C.; Munchhoff, M.; Pouwer, K.; Shah, B.; Sun, J.; Teixeira, J.; Vries, T.; Whipple, D. A.; Wilcox, G. Org. Process Res. Dev. 2003, 7, 115. k) Cai, W.; Colony, J. L.; Frost, H.; Hudspeth, J. P.; Kendall, P. M.; Krishnan, A. M.; Makowski, T.; Mazur, D. J.; Phillips, J.; Brown Ripin, D. H.; Ruggeri, S. G.; Stearns, J. F.; White, T. D. Org. Process Res. Dev. 2005, 9, 51. l) Brown Ripin, D. H. PCT WO 2004/046112, 2004. m) Hu, X. E.; Kim, N. K.; Ledoussal, B. Org. Lett. 2002, 4, 4499. n) Jiang, J.-K.; Ghoreschi, K.; Deflorian, F.; Chen, Z.; Perreira, M.; Pesu, M.; Smith, J.; Nguyen, D.-T.; Liu, E. H.; Leister, W.; Costanzi, S.; O’Shea, J. J.; Thomas, C. J. J. Med. Chem. 2008, 51, 8012. o) Patil, Y. S.; Bonde, N. L.; Kekan, A. S.; Sathe, D. G.; Das, A. Org. Process Res. Dev. 2014, 18, 1714.
6. Adolfo, M.; Mario, J. S.; Leonardo, S. S. Tetrahedron Lett. 2013, 54, 5096.
7. Ripin, D. H. B.; Abele, S.; Cai, W.; Blumenkopf, T.; Casavant, J. M.; Doty, J. L.; Flanagan, M.; Koecher, C.; Laue, K. W.; McCarthy, K.; Meltz, C.; Munchhoff, M.; Pouwer, K.; Shah, B.; Sun, J.; Teixeira, J.; Vries, T.; Whipple, D. A.; Wilcox, G. Org. Process Res. Dev. 2003, 7, 115.
8. a) Evidente, A.; Lanzetta, R.; Capasso, R.; Vurro, M.; Bottalico, A. Phytochemistry 1993, 34, 999. b) Evidente, A.; Capasso, R.; Abouzeid, M. A.; Lanzetta, R.; Vurro, M.; Bottalico, A. J. Nat. Prod. 1993, 54, 1937. c) Fürstner, A.; Radkowski, K.; Wirtz, C.; Goddard, R.,; Lehmann, C. W.; Mynott, R. J. Am. Chem. Soc. 2002, 124, 7061.
9. Fletcher, M. T.; Mckenzie, R. A., Blaney. B. J.; Reichmann, K. G. J. Agric. Food Chem. 2009, 57, 311.
10. a) Smith, L. W.; Edgar, J.A.; Willing, R. I.; Gable, R. W.; Mackay, M. F.; Suri, O. P.; Atal, C. K.; Culvenor, C. C. J. Aust. J. Chem. 1988, 41, 429. b) Smith, L. W.; Culvenor, C. C. J. Aust. J. Chem. 1957, 10, 464. c) Wang, X.; Han, G.-Q.; Cui, J.-Q.; Pan, J.-X.; Li, C.-L. J. Beijing Med. Coll. 1981, 12, 310. d) Han, G.-Q.; Xu, S.-M.; Liu, F.-Q.; Wang, X. J. Beijing Med. Coll. 1981, 12, 15. e) Brossi, A. The Alkaloids: Chemistry and Pharmacology Vol. 32. f) Ebel, H.; Polborn, K.; Steglich, W. Eur. J. Org. Chem. 2002, 2905. g) Becker, J.; Butt, L.; Kiedrowski, V. V.; Mischler, E.; Quentin, F.; Hiersemann, M. J. Org. Chem. 2014, 79, 3040.
11. 葉家宗,清華大學七十七學年度碩士論文。
12. a) 林怡秀,清華大學七十九學年度碩士論文。b) Uang, B.-J.; Lin, Y.-S.; Hsu, C.-Y. Tetrahedron: Asymmetry 1992, 1, 219.
13. 張家文,清華大學八十九學年度博士論文。
14. a) 詹德品,清華大學八十六學年度碩士論文。b) Chang, J.-W.; Jang, D.-P.; Uang, B.-J.; Liao, F.-L.; Wang, S.-L. Org. Lett. 1999, 1, 2061. c) 詹德品,清華大學九十二學年度博士論文。d) 林忠霖,清華大學九十六學年度碩士論文。
15. a) Pearson, W. H.; Cheng, M.-C. J. Org. Chem. 1986, 51, 3746. b) Boons, G.-J.; Downham, R.; Kim, K.-S.; Woods M.; Ley, S.V Tetrahedron 1994, 50, 7157. c) Dixon, D. J.; Ley, S. V.; Rodriguez, F. Org. Lett. 2001, 3, 3753.
16. Liu, L.-X., Wei, B.-G., Ruan, Y.-P., Huang, P.-Q. Org. Lett., 2003, 5, 1927.
17. Sewald, K.; Hiller, K. D.; Körner, M.; Findeisen, M. J. Org. Chem. 1998, 63, 7263.
18. Li, G.;Xu, X.,; Chen, D.; Timmons, C.; Carducci, M. D.; Headley, A. D. Org. Lett. 2003, 5, 329.
19. Reyes, E.; Vicario, J. L.; Carrillo, L.; Badía, D.; Iza, A.; Uria, U. Org. Lett. 2006, 8, 2535.
20. Ozeki, M.; Ochi, S.; Hayama, N.; Hosoi, S.; Kajimoto, T., Node, M. J. Org. Chem. 2010, 75, 4201.
21. Shen, A.; Liu, M.; Jia, Z.-S.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2010, 12, 5154.
22. Subeki,; Matsuura, H.; Takahashi, K.; Nabeta, K.; Yamasaki, M.; Maede, Y.; Katakura, K. J. Nat. Prod. 2007, 70, 1654.
23. Zhang, H.; Rothwangl, K.; Mesecar, A. D.; Sabahi, A.; Rong, L.; Fong, H. H. S. J. Nat. Prod. 2009, 72, 2158.
24. Kumar, R. N.; Meshram, H. M. Tetrahedron Lett. 2011, 52, 1003.
25. 鍾權忠,清華大學九十九學年度博士論文。
26. Seebach, D. Angew. Chem. Int. Ed. 1988, 27, 1624.
27. Ireland, R. E.; Mueller, R. H.; Williard, A. K. J. Am. Chem. Soc. 1976, 98, 2868.
28. Pinto, A. C.; Freitas, C. B. L; Dias, A.G.; Pereira, V. L. P.; Tinant, B.; Declercq, J.-P.; Costa, P. R. R. Tetrahedron: Asymmetry 2002, 13, 1025.
29. Sarabia-García, F.; López-Herrera, F. J. Tetrahedron Lett. 1995, 16, 2851.
30. Hynes, P. S.; Stranges, D.; Stupple, P. A.; Guarna, A.; Dixon, D. J. Org. Lett. 2007, 9, 2107.
31. Fujii, T.; Ohshiro, Y.; Hirao, T. Tetrahedron Lett. 1992, 33, 5823.
32. Amaya, T.; Masuda, T.; Maegawa, Y.; Hirao, T. Chem Comm. 2014,50, 2279.
33. Amaya, T.; Maegawa, Y.; Masuda, T.; Osafune, Y.; Hirao, T. J. Am. Chem. Soc., 2015, 137 , 10072.
34. Lee, S.-G.; Zhang, Y.-J.; Song, C.-E.; Lee, J.-K.; Chio, J.-H. Angew. Chem. Int. Ed. 2002, 41, 847.
35. Mosse, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A. Org. Lett. 2006, 8, 2559.
36. Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem. Int. Ed. 1998, 37, 2580.
37. Kotti, S. R. S. S.; Timmons, C.; Li, G. Chem. Biol. Drug Des. 2006, 67, 101.
38. Ishikawa, T.; Nonaka S.; Ogawa, A.; Hirao, T. Chem. Commun.1998, 1209.
39. (a) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103, 3099. (b) Brown, H. C.; Dhar, R. K.; Bakahi, R. K.; Pandiarajan, P. K.; Singaram, B. J. Am. Chem. Soc. 1989, 111, 3441. (c) Brown, H. C.; Ganesan, K.; Dhar, R. K. J. Org. Chem. 1993, 58, 147. (d) Abiko, A.; Liu, J.-F.; Masamune, S. J. Org. Chem. 1996, 61, 2590.