簡易檢索 / 詳目顯示

研究生: 高煜勛
Kao, Yu-Hsun
論文名稱: 降低以電漿輔助化學氣相沉積法鍍製之氮氧化矽薄膜光學吸收之研究
Study the reduction of optical absorption of the oxynitride thin film fabricated by plasma enhanced chemical vapor deposition
指導教授: 趙煦
Chao, Shiuh
口試委員: 陳至信
Chen, Jyh-Shin
井上優貴
Yuki, Inoue
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 73
中文關鍵詞: 電漿輔助化學氣相沉積法氮氧化矽氮氧化矽光學吸收
外文關鍵詞: Silicon oxynitride, optical absorption, PECVD
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射干涉重力波偵測天文台(LIGO)利用大型麥克森干涉儀偵測重力波,由於重力波訊號相當微弱又容易受到各種雜訊干擾,所以必須降低環境雜訊以提高重力波探測系統的靈敏度。反射鏡薄膜材料的熱擾動雜訊為影響系統的雜訊來源之一,根據fluctuation-dissipation theorem得知此雜訊與材料之機械損耗成正比。此外做為光學應用之高反射鏡薄膜也必須擁有良好的光學性質,因此研發低機械損耗且光學特性良好之薄膜材料為本實驗室的主要研究方向。
    首先本實驗室已經利用PECVD鍍製出具備高折射率以及低溫機械損耗較低且平坦之氮化矽薄膜SiN0.33H0.58;低折射率方面已經鍍製出改善SiO2低溫機械損耗有峰值缺點之氮氧化矽薄膜SiO0.85N0.27H0.45,不過該材料有著較高的矽懸鍵。本研究以三種方式嘗試減少氮氧化矽薄膜之矽懸鍵,使氮氧化矽薄膜之光學吸收能夠進一步降低。
    本研究三種方式分別為:1.固定N2O/SiH4流量比,調整氣體通量、2.補氫退火、3.純氮退火。第一種方式在氣體通量增加時,讓腔體內原子碰撞機率增加,使懸鍵不易產生,不過在減少矽懸鍵的同時,折射率也同時上升,能隙也同時下降,因此光學吸收降低效果不佳,與SiN0.33H0.58¬做高反射鏡堆疊會讓總厚度增加,使機械損耗上升。第二種補氫退火,能夠將氫擴散至薄膜內部與懸鍵相互結合,使懸鍵減少,光學吸收也因此降低,在長時間退火下,能夠持續減少矽懸鍵,且折射率不會有太大的變化,在補氫退火6小時後,1064nm之光學吸收從2×10-6降至8×10-7,降了60%;1550nm之光學吸收從8.5×10-6降至4.9×10-6,降低43%,1950nm之光學吸收則從9.5×10-6降至7.9×10-6,降低17%。第三種純氮退火使懸鍵與懸鍵相互結合,使矽懸鍵減少,該方式在長時間退火下無法持續降低矽懸鍵,因此改善光學吸收之效果並不如補氫退火。所以如果要降低薄膜中的矽懸鍵,補氫退火是一個不錯的方式,而且並不會對薄膜造成其他負面影響。


    Laser Interferometer Gravitational-Wave Observatory (LIGO) uses the large Michelson interferometer to observe the gravitational wave directly. Due to the signal of the gravitational wave is quite weak and is impacted by various noise easily, it is important that increasing the sensitivity of the detector by reducing the environmental noise. The coating Brownian noise which is contributed from the materials coated on the high-refractive mirror is one of the noise types influencing the measuring systems. According to the fluctuation-dissipation theorem, the coating Brownian noise is proportional to the mechanical loss of the materials. Additionally, the coating materials of the high-refractive mirror must have excellent optical characteristics. Therefore, we have been dedicated to developing thin-film materials with low mechanical loss and outstanding optical properties.
    Our group developed NH3-free silicon nitride thin film, SiN0.33H0.58, which had a high refractive index and low cryogenic loss without loss peak;we also developed silicon oxynitride thin film, SiO0.85N0.27H0.45, which had lower refractive index and cryogenic loss was lower than SiO2, but dangling bond was not low enough. So, this research tried three way to reduce dangling bond of silicon oxynitride.
    First way, fixed N2O/SiH4 flow rate, and adjust gas flow. With increasing the gas(N2O、SiH4) flow, the dangling bond would reduce, but refractive index was increase. Energy gap was lower. Therefore, optical absorption had no better reduction. Second way, H2 annealing. This way was the best in the three ways. With H2 annealing, H2 can diffuse in the thin film, and combine with dangling bond. Under long-term H2 annealing, dangling bond will been decreased continuously, so the optical absorption had a better reduction. Optical absorption in 1064nm reduce from 2×10-6 to 8×10-7;Optical absorption in 1550nm reduce from 8.5×10-6 to 4.9×10-6, Optical absorption in 1950nm reduce from 9.5×10-6 to 7.9×10-6. Third way was N2 annealing. This way did not better than H2 annealing. Because this way made dangling bond to combine with each other. Under long-term N2 annealing, dangling can’t be continuously reduced, so decreasing optical absorption by N2 annealing was not better than H2 annealing.

    Abstract i 摘要 iii 致謝 iv 目錄 vi 圖目錄 viii 表目錄 x 第一章 、導論 1 1-1 前言 1 1-2 研究動機 3 第二章 、固定流量比調整氣體通量降低氮氧化矽薄膜光學吸收之研究 7 2-1 氮氧化矽薄膜製程介紹 7 2-2 固定流量比調整氣體通量之動機 8 2-3 固定流量比調整氣體通量之薄膜分析 10 2-3-1 元素組成比例 11 2-3-2 懸鍵密度與沉積速率分析 12 2-3-3 鍵結密度 16 2-3-4 折射係數與能隙 19 2-3-5 光學吸收量測原理及分析 20 2-4 固定流量比調整氣體通量之結論與後續實驗 25 第三章 、以補氫退火降低氮氧化矽薄膜光學吸收之研究 28 3-1 補氫退火之製程介紹 28 3-2 補氫退火之動機 29 3-3 不同溫度下補氫退火之薄膜分析 30 3-3-1 厚度及鍵結密度 31 3-3-2 懸鍵密度 32 3-3-3 折射係數與能隙 33 3-3-4 光學吸收 34 3-4 不同時間下補氫退火之薄膜分析 36 3-4-1 厚度、薄膜密度及元素組成 37 3-4-2 鍵結密度 39 3-4-3 懸鍵密度 43 3-4-4 折射係數與能隙 44 3-4-5 光學吸收 45 第四章 、以純氮退火降低氮氧化矽薄膜光學吸收之研究 49 4-1 純氮退火之製程介紹 49 4-2 純氮退火之動機 50 4-3 不同時間下純氮退火之薄膜分析 50 4-3-1 厚度、薄膜密度及元素組成 51 4-3-2 鍵結密度 52 4-3-3 懸鍵密度 54 4-3-4 折射係數與能隙 55 4-3-5 光學吸收 56 第五章 、補氫退火及純氮退火後薄膜特性比較 60 5-1 兩種退火之厚度與鍵結密度比較 60 5-2 兩種退火之懸鍵密度比較 61 5-3 兩種退火之光學吸收比較 62 第六章 、總結與未來規劃 63 6-1 總結 63 6-2 未來規劃 67 參考文獻 69

    [1] A. Einstein, “Die grundlage der allgemeinen relativitatstheorie”, Annalen der Physik 49, 769 (1916).
    [2] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Observation of gravitational waves from a binary black hole merger”, Phys. Rev. Lett. 116, 061102 (2016).
    [3] LIGO Scientific Collaboration, Instrument Science White Paper 2019, LIGO Document: LIGO-T1900409-v2 (2019).
    [4] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 83,34-40 (1951).
    [5] R. F. Greene, H. B. Callen. On the formalism of thermodynamic fluctuation theory. Phys. Rev., 83: 1231-1235 (1951).
    [6] H. B. Callen, R. F. Greene, On a theorem of irreversible thermodynamics., Phys. Rev. 86,702-710 (1952).
    [7] ET Science Team, “Einstein gravitational wave telescope conceptual design study: ET-0106C-10” (European gravitational observatory, Cascina Italy, 2011) https://tds.virgo-gw.eu/?call_file=ET-0106C-10.pdf
    [8] K. Somiya, “Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector”, Class. Quantum Grav. 29, 124007 (2012).
    [9] R. Adhikari et al., “LIGO III Blue Concept LIGO”, LIGO Report No. LIGO-G1200573, 2012, http://dcc.ligo.org/LIGO-G1200573-v1/public
    [10] I. W. Martin et al., “Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2”, Class. Quantum Grav. 26, 155012 (2009).
    [11] I. W. Martin et al., Low temperature mechanical dissipation of an ion-beam sputtered silica film, Class. Quantum Grav., 31, 035019 (2014).
    [12] W. J. Tsai, Study of the optical and mechanical properties of silicon oxynitride thin films fabricated by plasma enhanced chemical vapor deposition, Master thesis, National Tsing Hua University (2019).
    [13] Z. L. Huang, The optical properties of PECVD silicon nitride films after thermal annealing, and the optical and mechanical properties of NH3-free PECVD silicon nitride films, Master thesis, National Tsing Hua University (2019).
    [14] F. Mandl et al., Statistical Physics (2nd Edition), John Wiley & Sons, (2008).
    [15] H.D. Young, R.A. Freedman, University Physics – With Modern Physics (12th Edition), Addison-Wesley (2008).
    [16] F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Optical Materials. 26, 33–46 (2004).
    [17] J. Dupuis, E. Fourmond, J. Lelièvre, D. Ballutaud, and M. Lemiti, “Impact of PECVD SiON stoichiometry and post-annealing on the silicon surface passivation,” Thin Solid Films. 516, 6954–6958 (2008).
    [18] L. He, T. Inokuma, Y. Kurata, and S. Hasegawa, “Vibrational properties of SiO and SiH in amorphous SiOx:H films (0 ≤ x ≤ 2.0) prepared by plasma-enhanced chemical vapor deposition,” Journal of Non-Crystalline Solids. 185, 249–261 (1995).
    [19] W. Scopel, M. Fantini, M. Alayo, and I. Pereyra, “Local structure and bonds of amorphous silicon oxynitride thin films,” Thin Solid Films. 413, 59–64 (2002).
    [20] X. Tan, J. Wojcik, and P. Mascher, “Study of the optical properties of SiOxNy thin films by effective medium theories,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 22, 1115–1119 (2004).
    [21] Y. Wang, X. Cheng, Z. Lin, C. Zhang, and F. Zhang, “Optimization of PECVD silicon oxynitride films for anti-reflection coating,” Vacuum. 72, 345–349 (2003).
    [22] B. Hallam, B. Tjahjono, and S. Wenham, “Effect of PECVD silicon oxynitride film composition on the surface passivation of silicon wafers,” Solar Energy Materials and Solar Cells. 96, 173–179 (2012).
    [23] H. Shanks, C. J. Fang, L. Ley, M. Cardona, F. J. Demond, and S. Kalbitzer, “Infrared spectrum and structure of hydrogenated amorphous silicon”, Phys. Status Solidi 100, 43 (1980).
    [24] C. J. Fang, K. J. Gruntz, L. Ley, M. Cardona, F. J. Demond, G. Muller, and S. Kalbitzer, “The hydrogen content of a-Ge:H and a-Si:H as determined by IR spectroscopy, gas evolution and nuclear reaction techniques”, J. Non-Cryst. Solids 35-36, 255 (1980)
    [25] A. Morimoto, Y. Tsujimura, M. Kumeda, and T. Shimizu, “Properties of hydrogenated amorphous Si-N prepared by various methods”, Jpn. J. Appl. Phys. 24, 1394 (1985).
    [26] H. C. Chen, Annealing effect on the room temperature mechanical loss of the silicon nitride films deposited with PECVD on silicon cantilever, Master thesis, National Tsing Hua University (2017)
    [27] L. A. Chang, Annealing effect on the optical and mechanical properties of nitrogen-rich silicon nitride film fabricated by plasma enhance chemical vapor deposition, Master thesis, National Tsing Hua University (2018)
    [28] Date, L., et al. "Analysis of the N2O dissociation in a RF discharge reactor." Journal of Physics D: Applied Physics 32.13 (1999): 1478.
    [29] F. C. Kuei, Study of silicon nitride and silicon oxynitride films fabricated by the plasma enhanced chemical vapor deposition method to derive empirical equation of optical absorption, Master thesis, National Tsing Hua University (2021).
    [30] LIGO Scientific Collaboration, “Advanced LIGO”, Classical Quant. Grav. 32, 074001 (2015)
    [31] G. Vajente, L. Yang, A. Davenport, M. Fazio, et al. Low Mechanical Loss TiO2∶GeO2 Coatings for Reduced Thermal Noise in Gravitational Wave Interferometers. Phys. Rev. L. 127, 071101 (2021).
    [32] N. C. Kang, Photothermal common path interferometry system setup and study of the optical absorption of the silicon nitride film deposited by PECVD method, Master thesis, National Tsing Hua University (2017).
    [33] D. L. Tsai, Study of the material properties of silicon nitride thin films fabricated by low pressure chemical vapor deposition for mirror coating of laser interferometer gravitational waves detector, Master thesis, National Tsing Hua University (2021).
    [34] M. M. Fejer, S. Rowan, G. Cagnoli, D. R. M. Crooks, A. Gretarsson, G.M. Harry, J. Hough, S. D. Penn, P. H. Sneddon, and S. P. Vyatchanin, “Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors”, Phys. Rev. D 70, 082003 (2004)
    [35] Van Nguyen, Son. "Effect of si—h and n—h bonds on electrical properties of plasma deposited silicon nitride and oxynitride films." Journal of electronic materials 16.4 (1987): 275-281.
    [36] J. Q. Wu, Study of silicon oxynitride and silicon nitride quarter-wave stack fabricated by a plasma enhanced chemical vapor deposition method for mirror coating of laser interferometer gravitational wave detectors, Master thesis, National Tsing Hua University (2021)
    [37] J. Rostaing, Y. Cros, S. Gujrathi, and S. Poulain, “Quantitative infrared characterization of plasma enhanced CVD silicon oxynitride films,” Journal of Non-Crystalline Solids. 97-98, 1051–1054 (1987).
    [38] Z. Yin and F. W. Smith, “Tetrahedron model for the optical dielectric function of hydrogenated amorphous silicon nitride alloys,” Physical Review B. 42, 3658–3665 (1990).
    [39] T. Makino and M. Maeda, “Bonds and Defects in Plasma-Deposited Silicon Nitride Using SiH4-NH3-Ar Mixture,” Japanese Journal of Applied Physics, vol. 25, 1300–1306 (1986).
    [40] V. Verlann, et al., “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD”, Thin Solid Films 517, 3499 (2009).
    [41] F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Optical Materials. 26, 33–46 (2004).
    [42] A. Sassella, “Tetrahedron model for the optical dielectric function of H-rich silicon oxynitride,” Physical Review B. 48, 14208–14215 (1993).
    [43] https://www.corning.com/
    [44] R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Applied Optics. 46, 8118 (2007).
    [45] L. C. Kuo, Study on nano-layers of titania and silica deposited by ion beam sputtering for mirror coatings of laser interferometer gravitational wave detector, PhD thesis, National Tsing Hua University (2019)

    QR CODE