簡易檢索 / 詳目顯示

研究生: 薛名倫
Syue, Ming-Lun
論文名稱: 利用飛秒瞬態吸收光譜技術研究細菌視紫質於不同溶解化條件下的光異構化反應
Photoisomerization of bacteriorhodopsin in different solubilization conditions by using femtosecond transient absorption spectroscopy
指導教授: 陳益佳
Chen, I-Chia
口試委員: 朱立岡
Chu, Li-Kang
余慈顏
Yu, Tsyr-Yan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: 細菌視紫質奈米碟光異構化反應飛秒瞬態吸收光譜
外文關鍵詞: Bacteriorhodopsin, Nanodisc, Photoisomerization, Femtosecond transient absorption spectroscopy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細菌視紫質受光激發後,其內部的視黃醛分子會進行光異構化反應,並驅動光迴圈反應進行質子傳遞並產生生物體所需的ATP。藉由奈米碟技術,單體化之細菌視紫質可被包覆於由膜支架蛋白及脂雙層所形成的脂質奈米碟中,透過調整脂雙層的脂質組成探討其對細菌視紫質性質之影響。為了進一步探討不同環境變因之影響,吾人亦將原生紫膜形式之細菌視紫質(PM)、包覆於界面活性劑TX-100內之單體化細菌視紫質(mbR_TX100),以及利用界面活性劑CHAPS去除紫膜中部分脂質之細菌視紫質(dPM)納入實驗進行比較。本實驗利用飛秒瞬態吸收光譜測量細菌視紫質光迴圈反應中I state之生命期,並使用575 nm及550 nm兩種激發波長,以確認激發波長對光異構化反應之影響。根據實驗結果發現,575 nm及550 nm兩種激發波長下可以觀察到相似的光異構化速率,而三聚體形式之細菌視紫質具有相似之光異構化速率(I state生命期約0.6至0.7 ps),且較單體形式細菌視紫質(I state生命期約0.9至1.4 ps)更快。在奈米碟細菌視紫質的實驗中則發現,使用單一脂質DOPG或DOPC組成之奈米碟細菌視紫質,不論脂質電性皆具有相似之光異構化速率,而使用DOPG及DOPC比例為1:1組成之奈米碟細菌視紫質則具有較慢之光異構化速率。吾人認為脂質環境改變會影響靜態吸收峰位置,而蛋白質結構及寡聚狀態改變可能會影響視黃醛分子周遭之電荷分布,導致光異構化速率產生變化。此外,吾人推論奈米碟中的脂質電性比例會影響光異構化反應,且在配合黃信毓之論文後得以進一步說明本研究所觀察到之趨勢。


    Monomerized bacteriorhodopsin (mbR) was embedded in lipid nanodisc (nbR) using different lipid compositions. For comparison with varied oligomeric statuses of bR, native bR in purple membrane (PM), partially delipidated PM (dPM) and momeric bR solubilized in TX-100 (mbR) were also prepared. When bR is excited by light, the retinal of bR undergoes photoisomerization from all-trans, 15-anti to 13-cis, 15-anti via the excited state (called I state), then initiates a photocycle reaction. The lifetime of the excited state of all-trans, 15-anti (I state) was detected using femtosecond transient absorption upon excitation at 575 nm and 550 nm, to confirm the excitation wavelength dependent photoisomerization kinetics. We found that the bR in trimeric forms, including PM and dPM, possess similar retinal photoisomerization kinetics (lifetime of I state τ_I=0.6-0.7 ps), which is faster than in mbR and nbR (τ_I=0.9-1.4 ps). Moreover, there is no distinguishable difference in photoisomerization when monomeric bR was embedded in different lipid composition of dioleoyl phosphatidylglycerol (DOPG) and dioleoyl phosphatidylcholine (DOPC). However, when lipid nanodisc containing ratio of DOPG : DOPC = 1:1, we observed a slightly slower rate of photoisomerization. Besides, the retinal photoisomerization kinetics upon excitation at 575 nm and 550 nm behavior similarly. We thus suggest that the positions of the charged residues at the vicinity of retinal in the monomerized bR differ from those in the trimer form and thus altered the rate of photoisomerization.

    第一章 序論 1 1-1 前言 1 1-2 文獻回顧 1 1-2-1 細菌視紫質之發現 1 1-2-2 光迴圈反應 1 1-2-3 細菌視紫質之結構 2 1-2-4 細菌視紫質組成形式及脂質環境 2 1-3 研究動機與目的 4 第二章 細菌視紫質及奈米碟之基本性質 8 2-1 細菌視紫質的性質及結構組成 8 2-2 細菌視紫質的靜態紫外吸收光譜特性 8 2-3 細菌視紫質的光異構化反應特性 9 2-4 奈米碟的性質及結構組成 11 第三章 實驗方法、儀器架設及樣品介紹 18 3-1 靜態紫外可見吸收光譜 18 3-2 飛秒瞬態吸收光譜 18 3-2-1 超快雷射系統 18 3-2-1-1 種子光源 18 3-2-1-2 啁啾脈衝放大器 18 3-2-2 調變雷射波長 20 3-2-2-1 原理 20 3-2-2-2 超螢光光波遊走光學參數放大器 21 3-2-2-3 TOPAS操作調光說明 22 3-2-3 瞬態吸收光譜法 25 3-2-3-1 原理 25 3-2-3-2 實驗儀器架設 26 3-2-3-3 瞬態吸收光譜數據處理 27 3-2-3-4 I state生命期擬合 28 3-3 樣品介紹 28 3-3-1 紫膜(PM)溶液配置 28 3-3-2 部份去脂質紫膜(dPM)製備 29 3-3-3 單體化細菌視紫質(mbR_TX100)製備 30 3-3-4 環化脂質奈米碟環境之單體化細菌(mbR_cND)視紫質 30 3-4 瞬態吸收光譜實驗條件 30 3-4-1 光源 30 3-4-1-1 時脈寬度 30 3-4-1-2 激發脈衝波長 31 3-4-1-3 激發脈衝強度 31 3-4-2 實驗樣品 32 第四章 實驗結果及討論 42 4-1 靜態吸收光譜 42 4-1-1 光適應態及暗適應態PM 42 4-1-2 不同環境之細菌視紫質 42 4-2 瞬態吸收光譜 44 4-2-1 實驗結果 44 4-2-2 數據擬合 45 4-2-3 I state衰減曲線及生命期 46 4-2-4 光異構化速率討論 47 4-2-4-1 異構物比例 48 4-2-4-2 細菌視紫質脂質環境 50 4-2-4-3 細菌視紫質之寡聚狀態及蛋白質結構 51 4-2-4-4 奈米碟之脂質組成 52 第五章 結論 73 參考文獻: 75 附錄: 79

    1. Stoeckenius, W.; Rowen, R., A Morphological Study of Halobacterium Halobium
    and Its Lysis in Media of Low Salt Concentration. J. Cell Biol. 1967, 34, 365-
    393.
    2. Stoeckenius, W.; Kunau, W. H., Further Characterization of Particulate Fractions
    from Lysed Cell Envelopes of Halobacterium Halobium and Isolation of Gas
    Vacuole Membranes. J. Cell Biol. 1968, 38, 337-357.
    3. Oesterhelt, D.; Stoeckenius, W., Rhodopsin-Like Protein from the Purple
    Membrane of Halobacterium Halobium. Nature New Biol. 1971, 233, 149.
    4. Blaurock, A. E.; Stoeckenius, W., Structure of the Purple Membrane. Nature New
    Biol. 1971, 233, 152.
    5. Oesterhelt, D.; Stoeckenius, W., Functions of a New Photoreceptor Membrane.
    Proc. Natl. Acad. Sci. U.S.A. 1973, 70, 2853-2857.
    6. Lozier, R. H.; Bogomolni, R. A.; Stoeckenius, W., Bacteriorhodopsin: A Light-
    Driven Proton Pump in Halobacterium Halobium. Biophys. J. 1975, 15, 955-962.
    7. Sharkov, A. V.; Pakulev, A. V.; Chekalin, S. V.; Matveetz, Y. A., Primary Events
    in Bacteriorhodopsin Probed by Subpicosecond Spectroscopy. Biochim. Biophys.
    Acta, Bioenerg. 1985, 808, 94-102.
    8. Terner, J.; El-Sayed, M. A., Time-Resolved Resonance Raman Spectroscopy of
    Photobiological and Photochemical Transients. Acc. Chem. Res. 1985, 18, 331-
    338.
    9. Rothschild, K. J.; Zagaeski, M.; Cantore, W. A., Conformational Changes of
    Bacteriorhodopsin Detected by Fourier Transform Infrared Difference
    Spectroscopy. Biochem. Biophys. Res. Commun. 1981, 103, 483-489.
    10. Gerwert, K.; Souvignier, G.; Hess, B., Simultaneous Monitoring of Light-
    Induced Changes in Protein Side-Group Protonation, Chromophore
    Isomerization, and Backbone Motion of Bacteriorhodopsin by Time-Resolved
    Fourier-Transform Infrared Spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 1990, 87,
    9774-9778.
    11. Richter, H.-T.; Brown, L. S.; Needleman, R.; Lanyi, J. K., A Linkage of the Pka's
    of Asp-85 and Glu-204 Forms Part of the Reprotonation Switch of
    Bacteriorhodopsin. Biochemistry. 1996, 35, 4054-4062.
    12. Du, M.; Fleming, G. R., Femtosecond Time-Resolved Fluorescence
    Spectroscopy of Bacteriorhodopsin: Direct Observation of Excited State
    Dynamics in the Primary Step of the Proton Pump Cycle. Biophys. Chem. 1993,
    48, 101-111.
    13. Henderson, R.; Unwin, P. N. T., Three-Dimensional Model of Purple Membrane
    76
    Obtained by Electron Microscopy. Nature 1975, 257, 28.
    14. Lemke, H. D.; Oesterhelt, D., Lysine 216 Is a Binding Site of the Retinyl Moiety
    in Bacteriorhodopsin. FEBS Lett. 1981, 128, 255-260.
    15. Henderson, R.; Baldwin, J. M.; Ceska, T. A.; Zemlin, F.; Beckmann, E.;
    Downing, K. H., Model for the Structure of Bacteriorhodopsin Based on High-
    Resolution Electron Cryo-Microscopy. J. Mol. Biol. 1990, 213, 899-929.
    16. Drachiev, L. A.; Kaulen, A. D.; Ostroumov.S. A.; Skulachev, V. P., Electrogenesis
    by Bacteriorhodopsin Incorporated in a Planar Phospholipid Membrane. FEBS
    Lett. 1973, 39, 43-45.
    17. Kayushin, L. P.; Skulanchev, V. P., Bacteriorhodopsin as an Electrogenic Proton
    Pump: Reconstitution of Bacteriorhodopsin Proteoliposomes Generating Δψ
    and ΔpH. FEBS Lett. 1973, 39, 39-42.
    18. Lozier, R. H.; Niederberger, W.; Bogomolni, R. A.; Hwang, S. B.; Stoeckenius,
    W., Kinetics and Stoichiometry of Light-Induced Proton Release and Uptake
    From Purple Membrane Fragments, Halobacterium Halobium Cell Envelopes
    and Phospholipid Vesicles Containing Oriented Purple Membrane. Biochim,
    Biophys. 1976, 440, 545-556.
    19. Eisenbach, M.; Weissmann, C.; Tanny, G.; Caplan, S. R., Bacteriorhodopsin-
    Loaded Charged Synthetic Membranes. FEBS Lett. 1977, 81, 77-80.
    20. Reynolds, J. A.; Stoeckenius, W., Molecular Weight of Bacteriorhodopsin
    Solubilized in Triton X-100. Proc. Natl. Acad. Sci U.S.A. 1977, 74, 2803-2804.
    21. Huang, K. S.; Bayley, H.; Khorana, H. G., Delipidation of Bacteriorhodopsin and
    Reconstitution with Exogenous Phospholipid. Proc. Natl. Acad. Sci. U.S.A. 1980,
    77, 323-327.
    22. Szundi, I.; Stoeckenius, W., Effect of Lipid Surface Charges on the Purple-to-
    Blue Transition of Bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 1987, 84,
    3681-3684.
    23. Bayburt, T. H.; Grinkova, Y. V.; Sligar, S. G., Self-Assembly of Discoidal
    Phospholipid Bilayer Nanoparticles with Membrane Scaffold Proteins. Nano
    Lett. 2002, 2, 853-856.
    24. Bayburt, T. H.; Sligar, S. G., Self-Assembly of Single Integral Membrane
    Proteins into Soluble Nanoscale Phospholipid Bilayers. Protein Science : A
    Publication of the Protein Society 2003, 12, 2476-2481.
    25. Song, L.; El-Sayed, M. A.; Lanyi, J. K., Protein Catalysis of the Retinal
    Subpicosecond Photoisomerization in the Primary Process of Bacteriorhodopsin
    Photosynthesis. Science 1993, 261, 891.
    26. Logunov, S. L.; Song, L.; El-Sayed, M. A., Ph Dependence of the Rate and
    Quantum Yield of the Retinal Photoisomerization in Bacteriorhodopsin. J. Phys.
    77
    Chem. 1994, 98, 10674-10677.
    27. Wang, J.; Link, S.; Heyes, C. D.; El-Sayed, M. A., Comparison of the Dynamics
    of the Primary Events of Bacteriorhodopsin in Its Trimeric and Monomeric
    States. Biophys. J. 2002, 83, 1557-1566.
    28. Lee, T. Y.; Yeh, V.; Chuang, J.; Chan, J. C. C.; Chu, L. K.; Yu, T. Y., Tuning the
    Photocycle Kinetics of Bacteriorhodopsin in Lipid Nanodiscs. Biophys. J. 2015,
    109, 1899-1906.
    29. Kao, Y. M.; Cheng, C. H.; Syue, M. L.; Huang, H. Y.; Chen, I. C.; Yu, T. Y.; Chu,
    L. K., Photochemistry of Bacteriorhodopsin with Various Oligomeric Statuses in
    Controlled Membrane Mimicking Environments: A Spectroscopic Study from
    Femtoseconds to Milliseconds. J. Phys. Chem. B 2019, 123, 2032-2039.
    30. Krebs, M. P.; Isenbarger, T. A., Structural Determinants of Purple Membrane
    Assembly. Biochim. Biophys. Acta, Bioenerg. 2000, 1460, 15-26.
    31. Smitienko, O. A.; Nekrasova, O. V.; Kudriavtsev, A. V.; Yakovleva, M. A.;
    Shelaev, I. V.; Gostev, F. E.; Dolgikh, D. A. Kolchugina, I. B. Nadtochenko, V.
    A.; Kirpichnikov, M. P.; Feldman, T. B.; Ostrovsky, M. A. Biochemistry. 2017,
    82, 490-500.
    32. Logunov, I.; Schulten, K., Quantum Chemistry: Molecular Dynamics Study of
    the Dark-Adaptation Process in Bacteriorhodopsin. J. Am. Chem. Soc. 1996, 118,
    9727-9735.
    33. Wand, A.; Friedman, N.; Sheves, M.; Ruhman, S., Ultrafast Photochemistry of
    Light-Adapted and Dark-Adapted Bacteriorhodopsin: Effects of the Initial
    Retinal Configuration. J. Phys. Chem. B. 2012, 116, 10444-10452.
    34. Heyes, C. D.; El-sayed, M. A., Proton Transfer Reactions in Native and
    Deionized Bacteriorhodopsin upon Delipidation and Monomerization. Biophys.
    J. 2003, 85, 426-434.
    35. Morgan, J. E.; Vakkasoglu, A. S.; Lanyi, J. K.; Gennis, R. B.; Maeda, A.,
    Coordinating the Structural Rearrangements Associated with Unidirectional
    Proton Transfer in the Bacteriorhodopsin Photocycle Induced by Deprotonation
    of the Proton-Release Group: A Time-Resolved Difference FTIR Spectroscopic
    Study. Biochemistry. 2010, 49, 3273-3281.
    36. Robb, M., Potential-Energy Surfaces for Ultrafast Photochemistry Static and
    Dynamic Aspects. Faraday Discuss. 1998, 110, 51-70.
    37. González-Luque, R.; Garavelli, M.; Bernardi, F.; Merchán, M.; Robb, M. A.;
    Olivucci, M., Computational Evidence in Favor of a Two-State, Two-Mode
    Model of the Retinal Chromophore Photoisomerization. Proc. Natl. Acad. Sci.
    U.S.A. 2000, 97, 9379-9384.
    38. Feldman, T. B.; Smitienko, O. A.; Shelaev, I. V.; Gostev, F. E.; Nekrasova, O. V.;
    78
    Dolgikh, D. A.; Nadtochenko, V. A.; Kirpichnikov, M. P.; Ostrovsky, M. A.,
    Femtosecond Spectroscopic Study of Photochromic Reactions of
    Bacteriorhodopsin and Visual Rhodopsin. J. Photochem. Photobiol. B. 2016,
    164, 296-305.
    39. Kobayashi, T.; Saito, T.; Ohtani, H., Real-Time Spectroscopy of Transition States
    in Bacteriorhodopsin During Retinal Isomerization. Nature. 2001, 414, 531.
    40. Tachikawa, H.; Iyama, T., Td-Dft Calculations of the Potential Energy Curves for
    the Trans–Cis Photo-Isomerization of Protonated Schiff Base of Retinal. J.
    Photochem. Photobiol. B. 2004, 76, 55-60.
    41. Cembran, A.; Bernardi, F.; Olivucci, M.; Garavelli, M., Counterion Controlled
    Photoisomerization of Retinal Chromophore Models: A Computational
    Investigation. J. Am. Chem. Soc. 2004, 126, 16018-16037.
    42. Bayburt, T. H.; Sligar, S. G., Membrane Protein Assembly into Nanodiscs. FEBS
    Letters. 2010, 584, 1721-1727.
    43. Yusuf, Y.; Massiot, J.; Chang, Y.-T.; Wu, P.-H.; Yeh, V.; Kuo, P.-C.; Shiue, J.; Yu,
    T.-Y., Optimization of the Production of Covalently Circularized Nanodiscs and
    Their Characterization in Physiological Conditions. Langmuir. 2018, 34, 3525-
    3532.
    44. Nango, E., et al., A Three-Dimensional Movie of Structural Changes in
    Bacteriorhodopsin. Science. 2016, 354, 1552.
    45. http://www.ks.uiuc.edu.
    46. Nasr, M. L.; et al. Nat. Methods 2017, 14, 49−52.
    47. Oesterhelt, D.; Stoeckenius, W., Isolation of the Cell Membrane of
    Halobacterium Halobium and its Fractionation into Red and Purple Membrane.
    Methods Enzymol. 1974, 31, 667-678.
    48. Hayashi, T.; Matsuura, A.; Sato, H.; Sakurai, M., Full-Quantum Chemical
    Calculation of the Absorption Maximum of Bacteriorhodopsin: A
    Comprehensive Analysis of the Amino Acid Residues Contributing to the Opsin
    Shift. Biophysics. 2012, 8, 115-125.
    49. Song, L.; Yang, D.; El-sayed, M. A., Retinal Isomer Composition in some
    Bacteriorhodopsin Mutants under Light and Dark Adaption Conditions. J. Phys.
    Chem. 1995, 99, 10052-10055.
    50. Heyes, C. D.; El-Sayed, M. A., The Role of Native Lipids and Lattice Structure
    in Bacteriorhodopsin Protein Conformation and Stability as Studied by
    Temperature-Dependent Fourier Transform-Infrared Spectroscopy. J.Biol. Chem.
    2002, 277, 29437-29443.

    QR CODE