簡易檢索 / 詳目顯示

研究生: 林瑋賢
Lin, Wei-Hsien
論文名稱: 肝癌衍生生長因子其HATH區域的肝素結合及N端修飾的研究
Heparin Binding and N-Terminal Processing of HATH domain of Hepatoma Derived Growth Factor
指導教授: 蘇士哲
Sue, Shih-Che
口試委員: 程家維
CHENG, JYA-WEI
鄒德里
Tzou, Der-Lii M.
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 58
中文關鍵詞: 肝癌衍生生長因子核磁共振肝素結合蛋白
外文關鍵詞: Hepatoma-derived growth factor, Paramagnetic relaxation enhancement
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • HDGF最早發現於肝癌衍生的HuH 7 細胞株培養液,為肝素 (heparin) 結合蛋白的一種,主要透過N端保留性的HATH區域來辨識細胞膜表面上的硫酸乙醯肝素 (heparan sulfate),進而促進蛋白質其內吞作用。HDGF也是分泌性的生長因子,其蛋白質分泌受N端前十個胺基酸的修飾,伴隨C12和C108形成分子內的雙硫鍵作調控。於研究中,我們希望闡明肝素與HDGF的HATH 區域之結合交互作用與HATH區域其N端的修飾,彼此之間的關係。首先,我們利用NMR的方法,將肝素滴定至HDGF的樣品,觀察蛋白質與不同醣鏈之肝素的交互結合作用,並且結合先前實驗室HDGF與肝素反應的SPR數據,進而分析正電性胺基酸對於肝素結合的貢獻度。我們發現K19和其周圍的正電性胺基酸構成了主要的肝素結合位置。其次,我們在HATH區域標定了順磁性的分子,觀察蛋白質其分子內的PRE,並且發現HDGF瞬間交互作用(transient interaction)主要影響於N端和C端。更進一步從實驗中證實,N端和C端的變動,是因為HDGF自發性的形成C12和C108分子內的雙硫鍵,將HATH區域的N端和C端靠在一起。隨後由SPR的方法比較氧化態 (-S-S-) 和還原態 (-SH) 的HDGF之肝素結合能力,氧化態 (-S-S-) 和還原態 (-SH)擁有相似的解離平衡常數值 (KD),意謂氧化態 (-S-S-) 的HATH區域同樣具有辨識細胞表面上硫酸乙醯肝素的能力。因此HDGF HATH區域其N端的修飾,對於細胞表面上的硫酸乙醯肝素結合是不容忽視。考慮肝素結合影響了蛋白質的內吞作用;然而N端的修飾則影響了蛋白質的分泌作用。當HDGF作用在細胞膜上,似乎這兩個效應是分開的。


    Hepatoma-derived growth factor (HDGF) was discovered from the conditional medium of HuH7 cell line. HDGF recognizes cell-surface heparan sulfate through binding to its conserved N-terminal HATH domain to promote protein internalization. Meanwhile, as a growth factor, N-terminal processing of the N-terminal first 10 residues and the presence of intramolecular disulfide bond between residues C12 and C108 has been reported critical in protein secretion. In this study, we aimed to exanimate the structural and functional relationship between heparin binding and the N-terminal processing of HATH domain. We defined the contribution of positively charged residues in heparin binding based on nuclear magnetic resonance (NMR) titration experiments and surface plasmon resonance (SPR) that residue K19 together with surrounding basic residues constitute the major heparin-binding site. By unambiguously labeling paramagnetic spin label on C12 of HATH mutant C108S, we observed the transient interaction between HATH N- and C-terminus by NMR paramagnetic relaxation enhancement (PRE) method. The result well explained the spontaneity of the disulfide linkage between C12 and C108. Subsequently, comparison of heparin binding between oxidized (-S-S-) and reduced (-SH) HATHs revealed similar KD values. Hence, the N-terminal processing caused ignorable effect in heparin recognition. Considering heparin-binding affecting protein internalization while N terminus process on secretion, these two effects are decoupled when HDGF acts on cell membrane.

    Contents ABSTRACT 中文摘要 CONTENTS ABBREVIATIONS INTRODUCTION 1.1 Background of Hepatoma-derived growth factor 1.2 Function of HATH domain 1.3 A module HATH Structure of HDGF for function 1.4 Secretion of HDGF 1.5 Form of heteromer between HDGF and HRP-2 1.6 Aim of research MATERIALS AND METHODS 2.1 Cloning constructs of HDGF HATH domain (HATH100 and HATH110) 2.2 Point mutation of hHDGF HATH110 to HATH110C108S by the method of site-directed mutagenesis 2.3 sequences of HATH100, HATH110 and HATH110C108S 2.4 Protein expression and purification 2.5 Preparation of heparin-derived oligosaccharides 2.6 15N-labeled and 15N-, 13C-labeled proteins 2.7 NMR HSQC experiments and heparin titrations 2.8 15N NMR phase-modulated CLEAN chemical EXchange (CLEANEX- PM) experiments with a fast-HSQC (FHSQC) detection 2.9 SDS page analysis of HATH110 2.10 Preparation of spin label conjugated proteins 2.11 NMR analysis of PRE effect (HATH100 and HATH110C108S) 2.12 Circular Dichroism (CD) 2.13 CD measurements 2.14 HSQC analysis of HATH110 (-SH) and HATH110 2.15 Backbone assignment of HATH110 (-SH) and HATH110 2.16 Surface Plasmon Resonance (SPR) experiments for heparin binding to HATH110 (-SH), HATH110 (-S-S-) and poHATH RESULTS 3.1 Heparin chain-length dependent effect of HATH binding in NMR titration experiment 3.2 Binding affinities of HDGF HATH in heparin chain-length-dependent effect 3.3 Heparin binding induced conformational change of HDGF HATH in CLEANEX-PM experiment 3.4 Polymerization in HDGF HATH110 3.5 Spontanleously oxidized (-S-S-) form in HDGF HATH110 3.6 Structural differences of HDGF HATH domain between reduced (HATH110 (-SH)) and oxidized (HATH110 (-S-S-)) form 3.7 Heparin-binding affinities of poHATH, HATH110 (-SH) and HATH110 (-S-S-) in SPR measurements DISSCUSSION 4.1 Heparin-binding of HDGF 4.2 N-terminal processing of HDGF 4.3 A purposed model for processed form of HDGF trafficking REFERENCES

    1. Nakamura, H., Izumoto, Y., Kambe, H., Kuroda, T., Mori, T., Kawamura, K., Yamamoto, H. & Kishimoto, T. (1994). Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 269, 25143-9.
    2. Izumoto, Y., Kuroda, T., Harada, H., Kishimoto, T. & Nakamura, H. (1997). Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun 238, 26-32.
    3. Ikegame, K., Yamamoto, M., Kishima, Y., Enomoto, H., Yoshida, K., Suemura, M., Kishimoto, T. & Nakamura, H. (1999). A new member of a hepatoma-derived growth factor gene family can translocate to the nucleus. Biochem Biophys Res Commun 266, 81-7.
    4. Dietz, F., Franken, S., Yoshida, K., Nakamura, H., Kappler, J. & Gieselmann, V. (2002). The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochem J 366, 491-500.
    5. Ge, H., Si, Y. & Roeder, R. G. (1998). Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 17, 6723-9.
    6. Stec, I., Nagl, S. B., van Ommen, G. J. & den Dunnen, J. T. (2000). The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 473, 1-5.
    7. Abouzied, M. M., Baader, S. L., Dietz, F., Kappler, J., Gieselmann, V. & Franken, S. (2004). Expression patterns and different subcellular localization of the growth factors HDGF (hepatoma-derived growth factor) and HRP-3 (HDGF-related protein-3) suggest functions in addition to their mitogenic activity. Biochem J 378, 169-76.
    8. Everett, A. D., Lobe, D. R., Matsumura, M. E., Nakamura, H. & McNamara, C. A. (2000). Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. J Clin Invest 105, 567-75.
    9. Oliver, J. A. & Al-Awqati, Q. (1998). An endothelial growth factor involved in rat renal development. J Clin Invest 102, 1208-19.
    10. Enomoto, H., Yoshida, K., Kishima, Y., Kinoshita, T., Yamamoto, M., Everett, A. D., Miyajima, A. & Nakamura, H. (2002). Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology 36, 1519-27.
    11. El-Rifai, W., Frierson, H. F., Jr., Harper, J. C., Powell, S. M. & Knuutila, S. (2001). Expression profiling of gastric adenocarcinoma using cDNA array. Int J Cancer 92, 832-8.
    12. Yamamoto, S., Tomita, Y., Hoshida, Y., Takiguchi, S., Fujiwara, Y., Yasuda, T., Doki, Y., Yoshida, K., Aozasa, K., Nakamura, H. & Monden, M. (2006). Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res 12, 117-22.
    13. Yoshida, K., Tomita, Y., Okuda, Y., Yamamoto, S., Enomoto, H., Uyama, H., Ito, H., Hoshida, Y., Aozasa, K., Nagano, H., Sakon, M., Kawase, I., Monden, M. & Nakamura, H. (2006). Hepatoma-derived growth factor is a novel prognostic factor for hepatocellular carcinoma. Ann Surg Oncol 13, 159-67.
    14. Yoshida, K., Nakamura, H., Okuda, Y., Enomoto, H., Kishima, Y., Uyama, H., Ito, H., Hirasawa, T., Inagaki, S. & Kawase, I. (2003). Expression of hepatoma-derived growth factor in hepatocarcinogenesis. J Gastroenterol Hepatol 18, 1293-301.
    15. Hu, T. H., Huang, C. C., Liu, L. F., Lin, P. R., Liu, S. Y., Chang, H. W., Changchien, C. S., Lee, C. M., Chuang, J. H. & Tai, M. H. (2003). Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 98, 1444-56.
    16. Zhang, J., Ren, H., Yuan, P., Lang, W., Zhang, L. & Mao, L. (2006). Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res 66, 18-23.
    17. Kishima, Y., Yamamoto, H., Izumoto, Y., Yoshida, K., Enomoto, H., Yamamoto, M., Kuroda, T., Ito, H., Yoshizaki, K. & Nakamura, H. (2002). Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem 277, 10315-22.
    18. Singh, D. P., Kubo, E., Takamura, Y., Shinohara, T., Kumar, A., Chylack, L. T., Jr. & Fatma, N. (2006). DNA binding domains and nuclear localization signal of LEDGF: contribution of two helix-turn-helix (HTH)-like domains and a stretch of 58 amino acids of the N-terminal to the trans-activation potential of LEDGF. J Mol Biol 355, 379-94.
    19. Yang, J. & Everett, A. D. (2007). Hepatoma-derived growth factor binds DNA through the N-terminal PWWP domain. BMC Mol Biol 8, 101.
    20. Thakar, K., Niedenthal, R., Okaz, E., Franken, S., Jakobs, A., Gupta, S., Kelm, S. & Dietz, F. (2008). SUMOylation of the hepatoma-derived growth factor negatively influences its binding to chromatin. FEBS J 275, 1411-26.
    21. Bueno, M. T., Garcia-Rivera, J. A., Kugelman, J. R., Morales, E., Rosas-Acosta, G. & Llano, M. (2010). SUMOylation of the lens epithelium-derived growth factor/p75 attenuates its transcriptional activity on the heat shock protein 27 promoter. J Mol Biol 399, 221-39.
    22. Everett, A. D., Yang, J., Rahman, M., Dulloor, P. & Brautigan, D. L. (2011). Mitotic phosphorylation activates hepatoma-derived growth factor as a mitogen. BMC Cell Biol 12, 15.
    23. Abouzied, M. M., El-Tahir, H. M., Prenner, L., Haberlein, H., Gieselmann, V. & Franken, S. (2005). Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity. J Biol Chem 280, 10945-54.
    24. Sue, S. C., Chen, J. Y., Lee, S. C., Wu, W. G. & Huang, T. H. (2004). Solution structure and heparin interaction of human hepatoma-derived growth factor. J Mol Biol 343, 1365-77.
    25. Wang, C. H., Davamani, F., Sue, S. C., Lee, S. C., Wu, P. L., Tang, F. M., Shih, C., Huang, T. H. & Wu, W. G. (2011). Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochem J 433, 127-38.
    26. Sue, S. C., Alverdi, V., Komives, E. A. & Dyson, H. J. (2011). Detection of a ternary complex of NF-kappaB and IkappaBalpha with DNA provides insights into how IkappaBalpha removes NF-kappaB from transcription sites. Proc Natl Acad Sci U S A 108, 1367-72.
    27. Thakar, K., Krocher, T., Savant, S., Gollnast, D., Kelm, S. & Dietz, F. (2010). Secretion of hepatoma-derived growth factor is regulated by N-terminal processing. Biol Chem 391, 1401-10.
    28. Thakar, K., Votteler, I., Kelkar, D., Shidore, T., Gupta, S., Kelm, S. & Dietz, F. (2012). Interaction of HRP-2 isoforms with HDGF: chromatin binding of a specific heteromer. FEBS J 279, 737-51.
    29. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. & Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277-93.
    30. Hwang, T. L., van Zijl, P. C. & Mori, S. (1998). Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J Biomol NMR 11, 221-6.
    31. Battiste, J. L. & Wagner, G. (2000). Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39, 5355-65.
    32. Kosen, P. A. (1989). Spin labeling of proteins. Methods Enzymol 177, 86-121.
    33. Teilum, K., Kragelund, B. B. & Poulsen, F. M. (2002). Transient structure formation in unfolded acyl-coenzyme A-binding protein observed by site-directed spin labelling. J Mol Biol 324, 349-57.
    34. Xue, Y., Podkorytov, I. S., Rao, D. K., Benjamin, N., Sun, H. & Skrynnikov, N. R. (2009). Paramagnetic relaxation enhancements in unfolded proteins: theory and application to drkN SH3 domain. Protein Sci 18, 1401-24.
    35. Lindfors, H. E., de Koning, P. E., Drijfhout, J. W., Venezia, B. & Ubbink, M. (2008). Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR. J Biomol NMR 41, 157-67.
    36. Wu, K. P. & Baum, J. (2010). Detection of transient interchain interactions in the intrinsically disordered protein alpha-synuclein by NMR paramagnetic relaxation enhancement. J Am Chem Soc 132, 5546-7.
    37. Cierpicki, T., Liang, B., Tamm, L. K. & Bushweller, J. H. (2006). Increasing the accuracy of solution NMR structures of membrane proteins by application of residual dipolar couplings. High-resolution structure of outer membrane protein A. J Am Chem Soc 128, 6947-51.
    38. Van Horn, W. D., Beel, A. J., Kang, C. & Sanders, C. R. (2010). The impact of window functions on NMR-based paramagnetic relaxation enhancement measurements in membrane proteins. Biochim Biophys Acta 1798, 140-9.
    39. Blaum, B. S., Deakin, J. A., Johansson, C. M., Herbert, A. P., Barlow, P. N., Lyon, M. & Uhrin, D. (2010). Lysine and arginine side chains in glycosaminoglycan-protein complexes investigated by NMR, cross-linking, and mass spectrometry: a case study of the factor H-heparin interaction. J Am Chem Soc 132, 6374-81.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE