簡易檢索 / 詳目顯示

研究生: 林伯翰
Lin, Po-Han
論文名稱: 甲醇水溶液在單一漸擴微流道之對流沸騰研究
Convective Boiling of Methanol-Water Mixtures in a Single Diverging Micro-channel
指導教授: 潘欽
Pan, Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 140
中文關鍵詞: 沸騰熱傳微流道雙成分流沸騰
外文關鍵詞: boiling heat transfer, microchannel, binary mixtures, flow boiling
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於發展一種低壓降、高穩定度但仍保有高熱傳能力之微流道蒸發器供雙成分液體,如甲醇水溶液,沸騰與蒸發之用。研究中係利用微機電技術來製作出不同漸擴角度之矽質微流道,藉由改變其通入之流量與加熱功率來進行不同濃度甲醇/水混合溶液在微流道內單相與雙相沸騰熱傳之研究。
    研究結果顯示,當工作流體在微流道內為單相流動時,有明顯的流量與濃度效應,且熱通率與熱傳遞係數會隨質量通率增加而增加。在剛開始進入雙相沸騰後,熱通率與熱傳遞係數會有顯著地上升現象。之後,熱通率隨著壁過熱度的增加而逐漸趨緩,熱傳遞係數則隨壁過熱度之增加而減少,最後達臨界熱通率。研究結果顯示,流道漸擴角度對於沸騰熱傳則沒有明顯的影響,甲醇莫耳分率的改變對於微流道內的沸騰熱傳具有顯著的影響。當工作流體進入沸騰雙相對流時,受到表面張力梯度所造成的Marangoni效應之影響,導致氣液介面附近液體牽引對流現象,因而增強其熱傳與質傳機制。在甲醇莫耳分率0 < xm≦0.5時,明顯觀察到氣液介面受Marangoni效應的影響,因表面張力的不平衡造成液膜破碎扭曲現象。尤以甲醇莫耳分率xm=0.3時其流動型態為液膜破碎時所散佈之熱通率與壁過熱度區間較其他莫耳分率為大,進而延遲了液膜乾化的發生,造成了臨界熱通率的提升。
    綜觀研究成果發現,在單相流動狀態下,純水具有較高的熱通率與熱傳遞係數。然而,在雙相流動狀態下,甲醇莫耳分率的改變進而增強其熱傳能力,使具有較高的臨界熱通率但亦有較高的壁過熱度與雙相流壓降。


    The proposed study aims to develop a low pressure drop, highly stable and efficient microchannel evaporator with binary component mixtures, such as methanol-water mixtures. This study conducts experiments, flow visualization and modeling of convective boiling of methanol-water mixtures, with different concentrations and flow rates, in a diverging microchannel. Flow boiling curve, two-phase flow pattern and two-phase flow pressure drop are explored. All of the microchannels etched on SOI wafer using MEMS technology, such as bulk micro-machining and anodic bonding.
    The experimental results reveal that boiling, heat flux increases with increasing superheat, but the slope decreases correspondingly. On the other hand, the results clearly indicate the strong influence of liquid mole fraction on the onset of boiling and the mixture composition results in a pivotal augmentation or reduction in heat transfer. Both critical heat flux and boiling heat transfer are enhanced at xm=0.3 due to the strong Marangoni effect. Flow visualization demonstrates five flow regimes : bubbly flow, slug flow, annular flow, film breakup, and dry out. Nevertheless, the film breakup regime plays an important role in triggering the CHF. At xm=0.3, the span of heat flux and superheat range helps to heighten the given input heat flux without dryout, and the highest CHF is demonstrated one other concentration. The results of present study suggest that by adding suitable amount of methanol in water may result in higher boiling heat transfer capability and higher two-phase flow pressure drop than pure water.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 符號說明表 xii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 研究方法 5 1.4 論文架構 6 第二章 文獻回顧 7 2.1 迷你或微流道內之流動沸騰研究 8 2.2 雙成分液體之沸騰研究 12 2.3 表面張力梯度對於雙成分液體沸騰的影響 15 第三章 甲醇/水混合溶液之物理性質 18 3.1 純物質的熱物化性質 18 3.1.1 氣體密度 19 3.1.2 液體密度 20 3.1.3 飽和蒸氣壓 20 3.1.4 表面張力 20 3.1.5 液體黏滯係數 21 3.1.6 液體比熱 21 3.2 甲醇/水混合溶液定義 22 3.2.1 液體莫耳分率 22 3.2.2 氣液平衡相圖之計算 23 3.3 甲醇/水混合溶液之物理性質 24 3.3.1 混合系統氣體密度 24 3.3.2 混合系統液體密度 25 3.3.3 混合系統表面張力 26 3.3.4 混合系統液體比熱 28 3.3.5 混合系統蒸發潛熱 (latent heat of vaporization) 29 第四章 實驗系統 31 4.1 實驗設備環路 31 4.1.1 高效能層析幫浦 32 4.1.2 測試段 32 4.1.3 加熱器模組 33 4.1.4 精密電子天平 34 4.2 實驗量測與數據擷取系統 34 4.2.1 溫度量測 34 4.2.2 壓力量測 35 4.2.3 數據擷取系統 35 4.3 影像擷取系統 35 4.3.1 高速攝影機 35 4.3.2 可變焦顯微光學系統 36 4.4 實驗步驟 36 4.5 微流道製作 38 4.5.1 製程基本原理 38 4.5.2 微流道設計 40 4.5.3 微流道製作程序 43 4.6 實驗誤差分析 45 第五章 實驗結果與討論 48 5.1 沸騰熱傳分析 48 5.1.1 能量平衡與熱傳分析計算 48 5.1.2 沸騰曲線 51 5.1.3 臨界熱通率 55 5.1.4 熱傳遞係數 58 5.2 雙相流動型態 63 5.2.1 甲醇莫耳分率對雙相流動型態的影響 71 5.2.2 流道漸擴角度對雙相流動型態的影響 83 5.3 雙相流壓降 90 5.3.1 甲醇莫耳分率對雙相壓降的影響 90 5.3.2 流道漸擴角度對雙相壓降的影響 94 第六章 結論與建議 98 6.1 本論文研究成果 98 6.2 未來研究建議 99 參考文獻 100 附錄A 氣液平衡相圖計算流程 105 附錄B 實驗數據 108

    [1] Park, G., Seo, D., Park, S., Yoon, Y., Kim, C., Yoon, W., "Development of microchannel methanol steam reformer", Chemical Engineering Journal, 101, 87-92, 2004
    [2] Park, G., Yim, S., Yoon, Y., Kim, C., Seo, D., Eguchi, K., "Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems", Catalysis Today, 110, 108-113, 2005
    [3] Hyung Gyu, P., Malen, J.A., Piggott, W.T., Morse, J.D., Greif, R., Grigoropoulos, C.P., Havstad, M.A., Upadhye, R., "Methanol steam reformer on a silicon wafer", Microelectromechanical Systems, Journal of, 15, 976-985, 2006
    [4] Sohn, J., Byun, C., "Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol", International Journal of Hydrogen Energy, 32, 5103-5108, 2007
    [5] Yoshida, K., Tanaka, S., Hiraki, H., Esashi, M., "A micro fuel reformer integrated with a combustor and a microchannel evaporator", J. Micromech. Microeng., 16, S191-S197, 2006
    [6] Moore, G., "Cramming more components onto integrated circuits", Proceedings of the IEEE, 86, 82-85, 1998
    [7] Collier, J., Thome, J., Convective boiling and condensation. Oxford University Press, USA, 1996
    [8] Tuckerman, D., Pease, R., "High-performance heat sinking for VLSI", IEEE Electron Device Letters, 2, 126-129, 1981
    [9] Upadhya, G., 2006. Cooligy□ Active Micro-Structure□ Cooling Offers Key to Advanced Processor Performance and Quieter Systems.
    [10] Kandlikar, S., Steinke, M., Tian, S., Campbell, L., "High-speed photographic observation of flow boiling of water in parallel mini-channels", 35th National Heat Transfer Coference, 675-684, 2001
    [11] Hetsroni, G., Mosyak, A., Segal, Z., "Nonuniform temperature distribution in electronic devices cooled byflow in parallel microchannels", IEEE Transactions on Components and Packaging Technologies, 24, 16-23, 2001
    [12] Zhang, L., Koo, J., Jiang, L., Asheghi, M., Goodson, K., Santiago, J., Kenny, T., "Measurements and Modeling of Two-Phase Flow in Microchannels With Nearly Constant Heat Flux Boundary Conditions", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 11, 2002
    [13] Zhang, L., Wang, E., Goodson, K., Kenny, T., "Phase change phenomena in silicon microchannels", International Journal of Heat and Mass Transfer, 48, 1572-1582, 2005
    [14] Qu, W., Mudawar, I., "Prediction and measurement of incipient boiling heat flux in micro-channel heat sinks", International Journal of Heat and Mass Transfer, 45, 3933-3945, 2002
    [15] Qu, W., Mudawar, I., "Flow boiling heat transfer in two-phase micro-channel heat sinks--I. Experimental investigation and assessment of correlation methods", International Journal of Heat and Mass Transfer, 46, 2755-2771, 2003
    [16] Qu, W., Mudawar, I., "Flow boiling heat transfer in two-phase micro-channel heat sinks--II. Annular two-phase flow model", International Journal of Heat and Mass Transfer, 46, 2773-2784, 2003
    [17] Qu, W., Mudawar, I., "Measurement and prediction of pressure drop in two-phase micro-channel heat sinks", International Journal of Heat and Mass Transfer, 46, 2737-2753, 2003
    [18] Lee, J., Mudawar, I., "Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II--heat transfer characteristics", International Journal of Heat and Mass Transfer, 48, 941-955, 2005
    [19] Lee, J., Mudawar, I., "Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I--pressure drop characteristics", International Journal of Heat and Mass Transfer, 48, 928-940, 2005
    [20] Kosar, A., Kuo, C., Peles, Y., "Boiling heat transfer in rectangular microchannels with reentrant cavities", International Journal of Heat and Mass Transfer, 48, 4867-4886, 2005
    [21] Jacobi, A., Thome, J., "Heat transfer model for evaporation of elongated bubble flows in microchannels", Journal of Heat Transfer, 124, 1131-1136, 2002
    [22] Thome, J.R., "Boiling in microchannels: a review of experiment and theory", International Journal of Heat and Fluid Flow, 25, 128-139, 2004
    [23] Thome, J.R., Dupont, V., Jacobi, A.M., "Heat transfer model for evaporation in microchannels. Part I: presentation of the model", International Journal of Heat and Mass Transfer, 47, 3375-3385, 2004
    [24] Dupont, V., Thome, J.R., Jacobi, A.M., "Heat transfer model for evaporation in microchannels. Part II: comparison with the database", International Journal of Heat and Mass Transfer, 47, 3387-3401, 2004
    [25] Revellin, R., Dupont, V., Ursenbacher, T., Thome, J.R., Zun, I., "Characterization of diabatic two-phase flows in microchannels: Flow parameter results for R-134a in a 0.5 mm channel", International Journal of Multiphase Flow, 32, 755-774, 2006
    [26] Revellin, R., Thome, J., "A new type of diabatic flow pattern map for boiling heat transfer in microchannels", J. Micromech. Microeng., 17, 788-796, 2007
    [27] Kandlikar, S., "Heat transfer mechanisms during flow boiling in microchannels", Journal of Heat Transfer, 126, 8, 2004
    [28] Steinke, M., ASME, S., "An experimental investigation of flow boiling characteristics of water in parallel microchannels", Journal of Heat Transfer, 126, 518, 2004
    [29] Steinke, M.E., Kandlikar, S.G., "Control and effect of dissolved air in water during flow boiling in microchannels", International Journal of Heat and Mass Transfer, 47, 1925-1935, 2004
    [30] Chen, T., Garimella, S., "Measurements and high-speed visualizations of flow boiling of a dielectric fluid in a silicon microchannel heat sink", International Journal of Multiphase Flow, 32, 957-971, 2006
    [31] Yen, T., Shoji, M., Takemura, F., Suzuki, Y., Kasagi, N., "Visualization of convective boiling heat transfer in single microchannels with different shaped cross-sections", International Journal of Heat and Mass Transfer, 49, 3884-3894, 2006
    [32] Kandlikar, S., "Nucleation characteristics and stability considerations during flow boiling in microchannels", Experimental Thermal and Fluid Science, 30, 441-447, 2006
    [33] Kosar, A., Kuo, C.-J., Peles, Y., "Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors", Journal of Heat Transfer, 128, 251-260, 2006
    [34] Schneider, B., Kosar, A., Peles, Y., "Hydrodynamic cavitation and boiling in refrigerant (R-123) flow inside microchannels", International Journal of Heat and Mass Transfer, 50, 2838-2854, 2007
    [35] Lin, Y.N., Pan, C., "Non-linear analysis for a natural circulation boiling channel", Nuclear Engineering and Design, 152, 349-360, 1994
    [36] Lu, C.-T., Pan, C., "BUBBLE DYNAMICS FOR CONVECTIVE BOILING IN SILICON-BASED, CONVERGING AND DIVERGING MICROCHANNELS", 0, BOI-12, 2006
    [37] Lee, P., Pan, C., "Boiling heat transfer and two-phase flow of water in a single shallow microchannel", J. Micromech. Microeng., 18, 025005, 2008
    [38] Rose, W., Gilles, H., Uhl, V., "Subcooled Boiling Heat Transfer to Aqueous Binary Mixtures", Heat transfer--Houston, 62, 1963
    [39] Sivagnanam, P., Varma, Y.B.G., "Subcooled boiling of binary mixtures under conditions of forced convection", Experimental Thermal and Fluid Science, 3, 515-522, 1990
    [40] McGillis, W.R., Carey, V.P., Fitch, J.S., Hamburgen, W.R., 1992. Boiling binary mixtures at subatmospheric pressures, Thermal Phenomena in Electronic Systems, 1992. I-THERM III, InterSociety Conference on, pp. 127-136.
    [41] Peng, X.F., Peterson, G.P., Wang, B.X., "Flow boiling of binary mixtures in microchanneled plates", International Journal of Heat and Mass Transfer, 39, 1257-1264, 1996
    [42] Chai, L.H., Peng, X.F., Lee, D.J., "Interfacial effects on nucleate boiling heat transfer of binary mixtures", International Journal of Thermal Sciences, 40, 125-132, 2001
    [43] Haendler, B.E., Sun, C.-L., Pettigrew, K.I., Walther, D.C., Pisano, A.P., "Evaporation of Methanol/Water Mixtures in Microchannels", ASME Conference Proceedings, 2003, 507-514, 2003
    [44] Sun, C.L., Shi, M.S., "Marangoni Effects on the Flow Boiling of Methanol/Water Mixtures in Microchannels", 19th International Symposium on Transport Phenomena, 2008
    [45] Scriven, L.E., Sternling, C.V., "The Marangoni Effects", Nature, 187, 186-188, 1960
    [46] Thomson, J., "On certain curious motions observable at the surfaces of wine and other alcoholic liquors", Philosophical Magazine Series 4, 10, 330-333, 1855
    [47] Mundell, D.W., James, H.M., "Dancing Crystals: A Dramatic Illustration of Intermolecular Forces", Journal of Chemical Education, 84, 1773, 2007
    [48] Hovestreijdt, J., "The influence of the surface tension difference on the boiling of mixtures", Chemical Engineering Science, 18, 631-639, 1963
    [49] Kern, J., Stephan, P., "Theoretical Model for Nucleate Boiling Heat and Mass Transfer of Binary Mixtures", Journal of Heat Transfer, 125, 1106-1115, 2003
    [50] Fujita, Y., Bai, Q., "Critical heat flux of binary mixtures in pool boiling and its correlation in terms of Marangoni number", International Journal of Refrigeration, 20, 616-622, 1997
    [51] Yaws, C.L., Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic chemicals. McGraw-Hill Professional, New York, 1999
    [52] Poling, B.E., Prausnitz, J.M., O'Connell, J.P., The properties of gases and liquids, Fifth ed. McGraw-Hill, New York, 2001
    [53] Ohe, S., Vapor-liquid equilibrium data. Kodansha, Tokyo, Japan, 1989
    [54] Moran, M., Shapiro, H., Fundamentals of engineering thermodynamics. John Wiley & Sons New York, 2003
    [55] Rackett, H.G., "Equation of state for saturated liquids", Journal of Chemical & Engineering Data, 15, 514-517, 1970
    [56] Tamura, M., Kurata, M., Odani, H., "PRACTICAL METHOD FOR ESTIMATING SURFACE TENSIONS OF SOLUTIONS", Bull. Chem. Soc. Jpn., 28, 83-88, 1955
    [57] Smith, J.M., Introduction to chemical engineering thermodynamics, 5th ed. ed. McGraw-Hill, New York :, 1996
    [58] Madou, M., Fundamentals of microfabrication: the science of miniaturization. CRC, 2002
    [59] Hwang, J.J., Tseng, F.G., Pan, C., "Ethanol-CO2 two-phase flow in diverging and converging microchannels", International Journal of Multiphase Flow, 31, 548-570, 2005
    [60] Carey, V.P., Liquid-vapor phase-change phenomena. Hemisphere, 186-192, 1992
    [61] Moffat, R.J., "Describing the uncertainties in experimental results", Experimental Thermal and Fluid Science, 1, 3-17, 1988
    [62] Incropera, F., DeWitt, D., Bergman, T., Lavine, A., "Fundamentals of heat and mass transfer", 1996
    [63] Jamialahmadi, M., M□ller-Steinhagen, H., Abdollahi, H., Shariati, A., "Experimental and theoretical studies on subcooled flow boiling of pure liquids and multicomponent mixtures", International Journal of Heat and Mass Transfer, 51, 2482-2493, 2008

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE