簡易檢索 / 詳目顯示

研究生: 吳皇都
Wu, Huang-Tu
論文名稱: 利用網印及化學蝕刻方式製作射極鈍化背面局部擴散之單晶矽太陽能電池研究
Using Screen Printing and Chemical Etching to Produce Mono-crystalline PERL Solar Cells
指導教授: 王立康
Wang, Li-Karn
口試委員: 張正陽
Chang, Jenq-Yang
何文章
Ho, Wen-Jeng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 太陽能電池
外文關鍵詞: solar cell
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因為solar grade的單晶矽品質較差,矽塊材本身的缺陷會比較多,所以我們在矽晶片表面利用PECVD沉積氫化非晶矽薄膜(a-si:H),並用真空退火爐做285℃到400℃的退火動作來修補表面斷鍵進行鈍化(passivation)處理。利用FTIR和QSSPC分別量測比較有無氫化非晶矽薄膜的氫含量和少數載子生命周期,且不同的退火溫度對少數載子生命周期的影響。
    由於我們的結構是射極鈍化背面局部擴散太陽電池,所以背面會用PECVD沉積一層厚度約100nm的氮化矽做保護跟絕緣用,接著使用網印蝕刻膠的方式做背面電極圖形的開口,此種方法會比黃光微影定義圖形的方式所需的時間及成本來的低,較適合應用在業界量產的模式。
    實驗結果顯示局部的背面電場載子收集率會比全面的背面電場高,而經過鈍化處理的電池表面缺陷較少,進而提高短路電流(Jsc)及效率。


    致謝…………………………………………………………Ⅰ 摘要…………………………………………………………Ⅱ 目錄…………………………………………………………Ⅲ 圖目錄………………………………………………………Ⅴ 表目錄………………………………………………………Ⅹ 第一章 序論 ……………………………………………………………………1 1.1 研究動機……………………………………………………………….1 1.2 文獻回顧……………………………………………………………….2 1.3 研究構想與實驗架構………………………………………………….3 1.4 論文大綱……………………………………………………………….5 第二章 基本原理...............................................................................................6 2.1 太陽能電池基本原理.............................................................................6 2.1-1 施子與受子..................................................................................6 2.1-2 太陽能電池發電原理..................................................................7 2.1-3太陽光譜.......................................................................................8 2.1-4載子復合.....................................................................................10 2.2太陽能電池等效電路............................................................................15 2.2-1 理想太陽能電池等效電路........................................................15 2.2-2 考慮電阻的太陽能電池等效電路............................................16 2.3太陽能電池的特性與效率....................................................................20 2.3-1太陽能電池基本參數.................................................................20 2.3-2其他參數.....................................................................................22 2.4太陽能電池的效率損失........................................................................23 2.4-1短路電流損失.............................................................................23 2.4-2開路電壓損失.............................................................................23 2.4-3填滿因子損失.............................................................................23 2.5背面電場................................................................................................24 第三章 實驗方法與流程.............................................................................25 3.1實驗設計................................................................................................25 3.2實驗流程................................................................................................26 3.2-1標準片之流程.............................................................................26 3.2-2 結構片之流程............................................................................27 3.3實驗步驟................................................................................................28 第四章 實驗結果與討論.............................................................................39 4.1 無PERL結構.......................................................................................39 4.1-1 全面BSF....................................................................................39 4.1-2 抗反射層的厚度討論................................................................40 4.1-3 正面銀電極線寬的討論............................................................44 4.1-4 無PERL結構太陽能電池之效率.............................................46 4.2 具PERL結構之太陽能電池................................................................50 4.2-1 局部BSF....................................................................................50 4.2-2 鈍化層與背面SiN保護層的討論............................................53 4.2-3 BES paste蝕刻溝寬的討論........................................................58 4.2-4 具PERL結構太陽能電池之效率.............................................60 第五章 結論........................................................................................................65

    [1] 黃惠良、曾百亨,太陽電池,五南出版社,2008。
    [2] Jianhua Zhao*, Aihua Wang, Martin A. Green, “High-efficiency PERL and PERT
    silicon solar cells on FZ and MCZ substrates,” Solar Energy Materials & Solar Cells 65 (2001) 429-435.
    [3] Armin G. Aberle , “Surface Passivation of Crystalline Silicon Solar Cells:A
    Review,” Prog. Photovolt: Res. 8, 362-376, 2000
    [4] T. Lauinger, J. Schmidt, A. G. Aberle, and R. Hezel, “Record low surface recombination velocities on 1 Ω cm p-silicon using remote plasma silicon nitride
    passivation,” Appl. Phys. Lett., vol. 68, no. 9, 1232-1234, 1996
    [5] B. Sopori and Y. Zhang, “H-Diffusion Mechanism(s) in PECVD Nitride Passivation of Si Solar Cells,” NCPV 1st Conf. Program Review Meeting,
    Lakewood Colorado, 14-17, 2001
    [6] I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas and R. Alcubilla, “Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor
    deposited amorphous SiCx: H films,” Appl. Phys. Lett., vol. 79, no. 14,
    2199-2201, 2001
    [7] Daniel Biro, Sebastian Mack, Andreas Wolf, Anke Lemke, Udo Belledin, Denis
    Erath, Benedikt Holzinger, Edgar Allan Wotke, Marc Hofmann, Luca Gautero, Sebastian Nold, Jochen Rentsch, Ralf Preu,” Thermal Oxidation as Key Technology for High Efficiency Screen Printed Industrial Silicon Solar Cells,” IEEE, 2009
    [8] V. D. Mihailetchi, Y. Komatsu, and L. J. Geerligs, “Nitric acid pretreatment for the
    passivation of boron emitters for n-type base silicon solar cells,” Appl. Phys. Lett. ,vol. 92, no. 6, 063510, 2008
    [9] J. Schmidt1,y, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden and W.
    M. M. Kessels,“Surface Passivation of High-efficiency Silicon Solar Cells by
    Atomic-layer-deposited Al2O3,” Prog. Photovolt: Res. Appl. 2008; 16:461–466
    [10] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H.
    Hanafusa and Y. Kuwano, “Development of New a-Si/c-Si Heterojunction Solar
    Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic
    Thin-Layer),” Jpn. J. Appl. Phys. 31 , 3518-3522, 1992
    [11] M. Taguchi , K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K.
    Uchihashi, N. Nakamura, S. Kiyama and O. Oota, “HITTM cells - high-efficiency crystalline Si cells with novel structure,” Prog. Photovolt: Res. 8, 503-513, 2000
    [12] 林堅楊、林坤立,單晶矽太陽能電池製程及其頻譜響應之研究,國立雲林科技大學電子工程研究所。
    [13] F.Book, S. Braun, A. Herguth, A. Dastgheib-Shirazi, B. Raabe, G. Hahn “The
    etchback selective emitter technology and it’s application to multicrystalline silicon,” Photovoltaic Specialists Conference, 2010
    [14] Kyeong-Yeon Cho Solar Cell Div., Shinsung Holdings, Seongnam, South Korea Il-Hwan Kim ; Dong-Joon Oh ; Ji-Myung Shim ; Eun-Joo Lee ; Hyun-Woo Lee ; Jun-Young Choi ; Ji-Sun Kim ; Jeong-Eun Shin ; Soo-Hong Lee ; Hae-Seok Lee “Improvements of Voc by selective emitter pattern optimization in screen printed crystalline Si solar cells.” Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE
    [15] U. Besi-Vetrella, L. Pirozzi, E. Salza,“Large Area Screen Printed Silicon Solar Cells With Selective Emitter Made by Laser Overdoping and RTA Spin-On Glasses,” 26th PVSC; Sept. 30-0ct.3,1997, Anaheim, CA
    [16] Martin Schaper, Jan Schmidt, Heiko Plagwitz*,y and Rolf Brendel “20.1%-efficient Crystalline Silicon Solar Cell with Amorphous Silicon
    Rear-surface Passivation,” Progress in Photovoltaic: Research and Applications Prog. Photovolt: Res. Appl. 2005; 13:381–386 Published online 14 June 2005
    [17] R. Siegel and J.R.Howell, “Thermal Radiation Heat Transfer,”(New York, MacGrawHill, 1972)
    [18]P.R. Gast,“Solar Radiation,”in Handbook of Geophysics, ed. C.F. Campen et al. (New York, MacGrawHill, 1960),pp. 14-16 to 16-30.
    [19] A. Luque and S. Hegedus, “Handbook of Photovoltaic Science and Engineering,” Chap. 3, John Wiley & Sons, Ltd, 2003.
    [20] 圖片來源: http://ppt.cc/93d-
    [21] 圖片來源: http://ppt.cc/usp9
    [22] 圖片來源: http://ppt.cc/qQ1F
    [23] 圖片來源: http://ppt.cc/bP1C
    [24] 圖片來源: http://ppt.cc/rhL9
    [25] Michael Rauer, Robert Woehl, Karola Rühle, Christian Schmiga, Martin Hermle, Matthias Hörteis, and Daniel Biro “Aluminum Alloying in Local Contact Areas on
    Dielectrically Passivated Rear Surfaces of Silicon Solar Cells.” IEEE Electron Device Letters, vol. 32, no. 7, July 2011
    [26] S. Gatz*, K. Bothe, J. Müller, T. Dullweber, R. Brendel“Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells.” Energy Procedia 8 (2011) 318–323
    [27] Tobias Fellmeth, S. Mack, J. Bartsch, D. Erath, U. Jäger, R. Preu, F. Clement, and D. Biro “20.1% Efficient Silicon Solar Cell With Aluminum Back Surface Field.” IEEE Electron Device Letters, vol. 32, no. 8, August 2011
    [28]圖片來源: http://ppt.cc/mYmH
    [29] Martin. A. Green 著,曹昭陽、狄大衛、李秀文譯,“太陽電池工作原理,技術與系統應用”,五南圖書出版公司,2009
    [30] Pablo Ferrada, Rudolf Harney, Eckard Wefringhaus, Jan Lossen, Karsten Meyer, “Diffusion through semitransparent barriers on p-type silicon wafers,” 24th European Photovolaic Solar Energy Conference, 2009.
    [31] M. Bähr, S. Kim, S. Sridharanl, C. Khadilkar, A. Shaikh, I. Köhler, M. Reichardt, M. Kumar, “A new approach for the front side metallization of industrial type silicon solar cells using a structurization by etching.” 22nd European Photovolaic Solar Energy Conference, September, 2007.
    [32] K. Neckermann, S. A. G. D. Corria, G. Andrä, M. Bähr, J. Lossen, “Local structuring of dielectric layers on silicon for improved solar cell metallization,” 22nd Eu-PVSEC, 2007.
    [33] O. Doll, C. Tueshaus, W. Stockum, I. Koehlerl D. Erath, J. Specht, A. Krieg, F. Clement, D. Biro T. Geppert, J. LOossen, “Improved edge isolation of solar cells applying readily dispensable etching paste,” 24th EU-PVSEC, 2009.
    [34] S. De Wolf and M. Kondo, “Abruptness of a-Si/c-Si interface revealed by carrier lifetime measurements,” Appl. Phys. Lett. 90, 042111, 2007
    [35] H. Fujiwara and M. Kondo, “Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells,” Appl. Phys. Lett. 90, 013503, 2007
    [36] M. Z. Burrows, U. K. Opila, S. De Wolf and R. W. Birkmire, “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation,” J. Vac. Sci. Technol, 26(4), 683, 2008
    [37] Sebastian Gatz, Thorsten Dullweber, and Rolf Brendel “Evaluation of Series Resistance Losses in Screen-Printed Solar Cells With Local Rear Contacts.” IEEE Journal of Photoltaics, vol. 1, no. 1, July 2011
    [38] Jiun-Hong Lai, Ajay Upadhyaya, Member, IEEE, Saptharishi Ramanathan, Arnab Das, Keith Tate, Vijaykumar Upadhyaya, Aditya Kapoor, Chia-Wei Chen, and Ajeet Rohatgi, Fellow, IEEE “High-Efficiency Large-Area Rear Passivated Silicon Solar Cells With Local Al-BSF and Screen-Printed Contacts,” IEEE journal of photovoltaics, vol.1, NO. 1, July 2011
    [39] Kyeong-Yeon Cho,II-Hwan Kim,Dong-Joon Oh, Ji-Myung,Shim,Eun-Joo,
    Lee,Hyun-Woo Lee,Jun-Young Choi,Ji-Sun Kim, Jeong-Eun Shin, Soo-Hong
    Lee and Hae-Seok Lee, “Improvements of Voc by selective emitter pattern optimization in screen printed crystalline Si solar cells,” Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, 20-25 June 2010, 1335-1338.
    [40] A. Kress, R. Tolle, T. Bruton, P. Fath, E. Bucher,” 10 x 10 cm 2 screen printed
    back contact cell with a selective emitter,” Photovoltaic Specialists Conference,
    2000. Conference Record of the Twenty-Eighth IEEE,(2000)213-216.
    [41] Christiana B. Honsberg, Member, IEEE, Jeffrey E. Cotter, Keith R. McIntosh,
    Stephen C. Pritchard,Bryce S. Richards, and Stuart R. Wenham, Senior Member,
    IEEE, “Design Strategies for Commercial Solar Cells Using the Buried Contact
    Technology,” IEEE transations on electron devices, Vol. 46,
    NO. 10, october 1999
    [42] W. Jooss,M. McCann,P. Fath,S. Roberts,T.M. Bruton,”Buried contact solar cells
    on multicrystalline silicon with optimized bulk and surface passication,” 3rd
    World Confererence on Photovollaic Energv Conversion May 11-18. 2003
    Osukn. Japan.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE