研究生: |
方博政 Fang, Po-Cheng |
---|---|
論文名稱: |
探討生物炭舒緩銅離子對綠豆生長的毒性 Studies on the mitigation of copper toxicity to mung bean's growth by biochar |
指導教授: |
徐邦達
Hsu, Ban-Dar |
口試委員: |
王恆隆
Wang, Heng-Long 劉姿吟 Liu, Tzu-Yin |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 全球暖化 、綠豆 、生物炭 、銅中毒 、活性氧 |
外文關鍵詞: | global warming, biochar, mung beans, copper toxicity, reactive oxygen species |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從生物炭(biochar)受到重視以來,多數的研究都著重於探討生物炭是否能增加植物產量以及生物炭本身的來源及製程;然而,對於生物炭用於去除土壤重金屬方面的研究則相對較少。因此,本論文主要探討生物炭是否能有效的吸附土壤重金屬,使植物生長恢復到一定的程度。
本研究主要分成兩部分,皆使用綠豆(Vigna radiata)作為研究材料,第一部分是於培養皿進行發芽測試;第二部分則進行盆栽土壤實驗。
培養皿發芽實驗中,我們發現生物炭能有效的吸附溶液中的銅離子,使植物生長的更好,有較高的鮮重、乾重、莖長,而且植物體內的銅含量也較低。生化檢測方面,處理生物炭的綠豆會有較高的可溶性醣類及蛋白質,以及較低的丙二醛(Malondialdehyde)含量。
盆栽實驗中,我們使用紅土作為材料,根據土壤汙染管制標準將盆栽分成五種不同的銅濃度,0、100、200、400、1000 mg/kg,並且於每種土壤銅濃度下分別加入0、10、20、30%(v/v)的生物炭。種植一個月後,測量鮮重、乾重、莖長、根長、各部位銅含量、可溶性醣類和蛋白質含量等。於不含銅的正常土壤中,以上各項數據差異並不大;土壤銅濃度100 mg/kg下,植物於10%生物炭含量下即可恢復正常生長狀態;200 mg/kg下則需要20%的生物炭含量;400 mg/kg時,即使30%的生物炭含量仍無法恢復正常生長狀態,但是在高生物炭含量下植物會生長的相對良好;1000 mg/kg下,20%和30%的生物炭含量下植物可以存活,但是生長不良。另一方面,銅離子會降低綠豆葉綠素含量,而生物炭可以幫助恢復葉綠素的含量但是並不是很明顯;再者,銅離子並不會影響綠豆葉綠素螢光(chlorophyll fluorescence,Fv/Fm)的數值,顯示銅離子影響植物光合作用的區域並不位在光系統II(photosystem II)。在分子層次上,我們選擇三個與活性氧(Reactive oxygen species, ROS)清除路徑相關的基因作為探討,Cu/Zn SOD、CAT、APX。發現於低銅濃度下,三個基因都會大量表現,而加入生物炭能降低基因的表現量;於高銅濃度下,則越多的生物炭能提供較好的保護,使植物有較佳的生長和表現較多的基因。
Since biochar had been taken seriously, many studies are focused on whether biochar can increase the crop yield and biochar’s manufacture and process. However only few studies were about the removal of heavy metal in soil by biochar. The aim of this study is to investigate whether the biochar could absorb the heavy metal in soil and revive the plants.
We divided the study into two parts using mung beans (Vigna radiate) as material. In the first part, the seed germination in Petri dish was examined; the second part was proceeded in soil to examine the growth of plants.
In Petri dish test, we found that biochar absorb the copper ions from solution efficiently; plants grew better, exhibited higher fresh weight, dry weight, stem length and lower copper concentration. Biochemical measurement revealed that mung beans with biochar had higher soluble sugar and protein and lower malondialdehyde content.
In the soil trials, we used red soil as material, tested five different soil copper concentrations, 0, 100, 200, 400, 1000 mg/kg according to the soil pollution control standards. For each soil concentration, four different biochar contents (0, 10, 20, 30%, v/v) were applied. After growing for a month, we measured fresh weight, dry weight, stem length, root length, copper concentration of plants, the content of soluble sugar and protein. In normal soil without copper, all the above data showed no significant difference; grown under 100 mg/kg, plants in 10% biochar content grew normally; at 200 mg/kg, 20% biochar is needed for proper growth; at 400 mg/kg, even 30% biochar content couldn’t restore plants back to normal, but with high biochar content, plants grew better; at 1000 mg/kg, plants could only survive with application of 20% and 30% biochar, but not in a good condition. In addition, copper ions reduced the chlorophyll content in mung beans, but biochar partially helped with the recovery. The values of Fv/Fm showed no difference among various groups, revealing that the site of action on photosynthesis is not located in PS II. At the molecular level, three genes related with ROS scavenging were chosen for the study: Cu/Zn SOD, CAT and APX. We found that at a lower copper concentration, three genes were upregulated, and downregulated when biochar was added; at a higher copper concentration, the more biochar we added, the better the plants grew and the higher the genes expressed.
行政院環境保護署 (2000)。水中導電度測定方法_導電度計法(NIEA W203.51B)。環署檢字第70017號公告。
行政院環境保護署 (2001)。土壤管制標準。行政院環境保護署環署水字第 0073684 號令。
行政院環境保護署 (2008)。土壤酸鹼值(pH值)測定方法_電極法(NIEA S410.62C)。環署檢字第0970075579號公告。
行政院農業試驗所 (2013)。土壤電導度測定方法(TARI S101.1B)。農試化字第1022130858號函發布。
行政院農業委員會 (2015)。農業統計年報(103年)。農業統計年報。
行政院環境保護署 (2014)。農業廢棄物管理策略。
行政院環境保護署 (2015)。2015年中華民國國家溫室氣體清冊報告。
林俐玲、許靖男與何俊賢 (2013)。添加生物碳對紅壤性質影響之探討。水土保持學報,45-2, 599-616。
林殿順 (2010)。臺灣二氧化碳地質封存潛能及安全性。經濟前瞻,(132), 93-97。
張文玲、李桂花與高衛東 (2009)。生物質炭對土壤性状和作物產量的影響。中國農學通報,25(17), 153-157。
陳尊賢 (2002)。土壤污染管制標準規定之探討。行政院環境保護署計畫報告。
陳尊賢、陸瑩、黃東亮與吳芳娥 (1992)。臺灣地區主要農業土壤中重金屬之鹽酸抽出量與全量之相關性。第三屆土壤污染防治研討會論文集,125-140。
劉玉山、張永達 (2009)。植物對重金屬的反應。科技部高瞻自然科學教學資源平台-科學online。
韓柏檉 (1989)。冰山一角_綠牡蠣事件。科學月刊,237期。
Alloway, B. (1995). Heavy metals in soils: Springer Science & Business Media.
Andrenelli, M., Maienza, A., Genesio, L., Miglietta, F., Pellegrini, S., Vaccari, F., & Vignozzi, N. (2016). Field application of pelletized biochar: Short term effect on the hydrological properties of a silty clay loam soil. Agricultural Water Management, 163, 190-196.
Arnon, D. I. (1949). COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiology, 24(1), 1-15.
Barón, M., Arellano, J. B., & Gorgé, J. L. (1995). Copper and photosystem II: a controversial relationship. Physiologia Plantarum, 94(1), 174-180.
Barraclough, P. (1989). Root growth, macro-nutrient uptake dynamics and soil fertility requirements of a high-yielding winter oilseed rape crop. Plant and Soil, 119(1), 59-70.
Bolouri‐Moghaddam, M. R., Le Roy, K., Xiang, L., Rolland, F., & Van den Ende, W. (2010). Sugar signalling and antioxidant network connections in plant cells. FEBS journal, 277(9), 2022-2037.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254. doi: http://dx.doi.org/10.1016/0003-2697(76)90527-3
Carter, S., Shackley, S., Sohi, S., Suy, T. B., & Haefele, S. (2013). The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3(2), 404-418.
Choudhury, S., Panda, P., Sahoo, L., & Panda, S. K. (2013). Reactive oxygen species signaling in plants under abiotic stress. Plant signaling & behavior, 8(4), e23681.
Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology, 38(17), 4649-4655.
Downie, A. E., Van Zwieten, L., Smernik, R. J., Morris, S., & Munroe, P. R. (2011). Terra Preta Australis: Reassessing the carbon storage capacity of temperate soils. Agriculture, ecosystems & environment, 140(1), 137-147.
Drążkiewicz, M., Skórzyńska-Polit, E., & Krupa, Z. (2004). Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. Biometals, 17(4), 379-387.
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi: 10.1021/ac60111a017
Fernandes, J., & Henriques, F. (1991). Biochemical, physiological, and structural effects of excess copper in plants. The Botanical Review, 57(3), 246-273.
Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi: http://dx.doi.org/10.1016/0003-9861(68)90654-1
Hegerl, G., Zwiers, F., Braconnot, P., Gillet, N., Luo, Y., Marengo, J., . . . Stott, P. (2007). Understanding and attributing climate change.
Hodges, M. D., DeLong, M. J., Forney, F. C., & Prange, K. R. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi: 10.1007/s004250050524
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland: IPCC.
Jacyn Baker, C., & Mock, N. M. (1994). An improved method for monitoring cell death in cell suspension and leaf disc assays using evans blue. Plant Cell, Tissue and Organ Culture, 39(1), 7-12. doi: 10.1007/bf00037585
Kawamoto, K., Ishimaru, K., & Imamura, Y. (2005). Reactivity of wood charcoal with ozone. Journal of Wood Science, 51(1), 66-72. doi: 10.1007/s10086-003-0616-9
Kim, J. S., Kim, M. H., Joe, M. H., Song, S. S., Lee, I. S., & Choi, S.-Y. (2002). The sctR of Salmonella enterica serova Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD. FEMS microbiology letters, 210(1), 99-103.
Koch, K. (1996). Carbohydrate-modulated gene expression in plants. Annual review of plant biology, 47(1), 509-540.
Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and adaptation strategies for global change, 11(2), 395-419.
Manyà, J. J. (2012). Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environmental Science & Technology, 46(15), 7939-7954.
Mao, J.-D., Johnson, R., Lehmann, J., Olk, D., Neves, E., Thompson, M., & Schmidt-Rohr, K. (2012). Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environmental Science & Technology, 46(17), 9571-9576.
Melgarejo, A. G., Cespedes, A. G., & Pavon, J. M. C. (1989). Simultaneous determination of nickel, zinc and copper by second-derivative spectrophotometry using 1-(2-pyridylazo)-2-naphthol as reagent. Analyst, 114(1), 109-111. doi: 10.1039/AN9891400109
Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in plant science, 9(10), 490-498.
Mulcahy, D., Mulcahy, D., & Dietz, D. (2013). Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. Journal of arid environments, 88, 222-225.
Ouzounidou, G. (1994). Copper-induced changes on growth, metal content and photosynthetic function of Alyssum montanum L. plants. Environmental and Experimental Botany, 34(2), 165-172.
Özçimen, D., & Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy, 35(6), 1319-1324.
Qian, H., Li, J., Sun, L., Chen, W., Sheng, G. D., Liu, W., & Fu, Z. (2009). Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquatic toxicology, 94(1), 56-61.
Pease, B. F., & Williams, M. B. (1959). Spectrophotometric Investigation of Analytical Reagent 1-(2-Pyridylazo)-2-naphthol and Its Copper Chelate. Analytical Chemistry, 31(6), 1044-1047. doi: 10.1021/ac60150a027
Porra, R. J. (2005). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b Discoveries in Photosynthesis (pp. 633-640): Springer.
Schulz, H., Dunst, G., & Glaser, B. (2014). No Effect Level of Co-Composted Biochar on Plant Growth and Soil Properties in a Greenhouse Experiment. Agronomy, 4(1), 34-51.
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012.
Shinogi, Y., & Kanri, Y. (2003). Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource technology, 90(3), 241-247.
Solaiman, Z. M., Murphy, D. V., & Abbott, L. K. (2012). Biochars influence seed germination and early growth of seedlings. Plant and soil, 353(1-2), 273-287.
Tans, P. P., Fung, I. Y., & Takahashi, T. (1990). Observational contrains on the global atmospheric CO2 budget. Science, 247(4949), 1431-1438.
Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59(6), 2501-2510.
Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., . . . Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil, 327(1-2), 235-246.
Victor, D. G. (2011). Global warming gridlock: creating more effective strategies for protecting the planet. Cambridge University Press.
Vinit-Dunand, F., Epron, D., Alaoui-Sossé, B., & Badot, P.-M. (2002). Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant science, 163(1), 53-58.
Yamasaki, A. (2003). An overview of CO2 mitigation options for global warming-Emphasizing CO2 sequestration options. Journal of Chemical Engineering of Japan, 36(4), 361-375.
Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2s. Plant and soil, 300(1-2), 9-20. 007). Mycorrhizal responses to biochar in soil–concepts and mechanism
Yaseen, M., Ahmad, T., Sablok, G., Standardi, A., & Hafiz, I. A. (2013). Review: role of carbon sources for in vitro plant growth and development. Molecular Biology Reports, 40(4), 2837-2849. doi: 10.1007/s11033-012-2299-z
Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17(1), 145-156.
Yuan, J.-H., Xu, R.-K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource technology, 102(3), 3488-3497.