簡易檢索 / 詳目顯示

研究生: 羅爾
Raul Amaury Robles Robles
論文名稱: 電磁誘發透明條件下之有限原子數的量子相變
Quantum phase transition of a finite number of atoms under electromagnetically induced transparency
指導教授: 李瑞光
Lee, Ray-Kuang
口試委員: 廖文德
Liao, Wen-Te
任祥華
Jen, Hsiang-Hua
陳應誠
Chen, Ying-Cheng
郭華丞
Kuo, Watson
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 60
中文關鍵詞: 量子相變個電磁波交互作用
外文關鍵詞: Quantum phase transition, Dark state polariton
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在論文主要在研究電磁引發透明條件下光和物質交互作用的量子性質。此文中使有限數量的原子與兩個電磁波交互作用,第一個是很強的古典場,第二個是可用量子力學描述很弱的探測電磁場。一種臨界的耦合強度會在量子相變發生的時候被揭露。我們提供了它在某些特定狀態的應用,做為介觀數量原子的量子記憶體。我們用數值計算來證明透過古典場的絕熱控制,把量子態轉移到原子系統是可行的,且這個原子系統達到拉曼共振的條件時,會將已儲存的光子以高保真度取回量子場。此外,可證明不必使用無限數量的原子來把光子態儲存到原子系統,只要光子的希爾伯特空間的維度等於或小於原子的數量。為了證明記憶體可用在非平凡態,我們用二相式態做為例子:用在有限大小的光子態類相干的性質。


    In this thesis we study the quantum properties of light-matter interaction under the electrically induced transparency configuration. Here, a finite number of atoms interact with two electromagnetic fields one assumed to be a strong field treated classically and the second one, a weak probe, which description is done by means of a quantum mechanics. A critical coupling strength is revealed at which quantum phase transition occurs. The application of this scheme, with a mesoscopic number of atoms, as a quantum memory is also provided for particular states. Numerical calculations are used to proof that by adiabatic control of the classical field it is possible to transfer the quantum state of the field into the atomic system, with the retrieval of this stored photons back to the field with a high fidelity if Raman resonance condition is achieved. Additionally, It is shown that an infinite number of atoms are not required to store a photonic state in the atomic system as long as the Hilbert space of the photons is of equal or smaller dimensions than the number of atoms. In order to justify the use of this memory on non trivial states binomial states are introduced as an example of finite-sized photonic states whit coherent-like properties.

    Abstract vii List of Figures xi List of Tables xiii 1 Introduction 1 1.1 Quantum interaction of light and matter . . . . . . . . . . . . . . . . . 1 2 Binomial States 5 2.1 Introduction to Binomial States . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Properties of the binomial state . . . . . . . . . . . . . . . . . . 8 2.2 Propagation of two coupled fields . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Twomode Binomial state . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Coherent states in twomode propagation . . . . . . . . . . . . 13 2.2.3 Additional properties . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Quantum Phase Transitions on EIT media 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Physical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 Conserved Quantities . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2 Reduced Hilbert subspaces. . . . . . . . . . . . . . . . . . . . 25 3.2.3 First Quantum Phase Transition . . . . . . . . . . . . . . . . . 26 3.2.4 Quantum Phase transition in limiting parameters . . . . . . . . 29 3.3 Alternative configurations . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Dark State Polaritons in finite atomic ensembles 35 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Dark state polariton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.1 Interaction Picture . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 Dark State Polariton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.1 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . 41 4.3.2 Time evolution of the ground state . . . . . . . . . . . . . . . . 43 4.4 AtomField entanglement . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ix 5 Projective Quantum State Tomography 47 5.1 Wigner Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.1.1 Quadrature Measurement . . . . . . . . . . . . . . . . . . . . . 49 5.1.2 Estimation of quadratures probabilities . . . . . . . . . . . . . 53 5.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2.1 results from experiments . . . . . . . . . . . . . . . . . . . . . 54 5.2.2 Applications of PQST beyond quantum mechanics . . . . . . . 55 5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6 Conclusions 59 References 61 x

    [1] Jones, N. “The quantum company: DWave
    is pioneering a novel way of making
    quantum computers–but it is also courting controversy.” Nature, 498(7454), 286289.
    (2013).
    [2] Castelvecchi, D. IBM’s quantum cloud computer goes commercial.” Nature News,
    543(7644), 159. (2017).
    [3] Benioff, P. “The computer as a physical system: A microscopic quantum mechanical
    Hamiltonian model of computers as represented by Turing machines’. Journal
    of statistical physics, 22(5), 563591
    (1980).
    [4] Gross, M., and Haroche, S. “Superradiance: An essay on the theory of collective
    spontaneous emission. Physics reports, 93(5), 301396.(
    1982).
    [5] Shor, P. W. “Algorithms for quantum computation: Discrete logarithms and factoring.”
    In Proceedings 35th annual symposium on foundations of computer science
    (pp. 124134).
    Ieee.(1994).
    [6] Wang, J. Y., Yang, B., Liao, S. K., Zhang, L., Shen, Q., Hu, X. F., ... and Zhong,
    B. “Direct and fullscale
    experimental verifications towards ground–satellite quantum
    key distribution.” Nature Photonics, 7(5), 387.(2013)
    [7] Ritter, S., Nölleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., ... and
    Rempe, G. “An elementary quantum network of single atoms in optical cavities”.
    Nature, 484(7393), 195. (2012).
    [8] Terraciano, M. L., Knell, R. O., Norris, D. G., Jing, J., Fernández, A., and Orozco,
    L. A. “Photon burst detection of single atoms in an optical cavity.” Nature Physics,
    5(7), 480. (2009).
    [9] Buluta, I., Ashhab, S., and Nori, F. “Natural and artificial atoms for quantum computation.”
    Reports on Progress in Physics, 74(10), 104401. (2011).
    [10] Stoler, D., Saleh, B. E. A., and Teich, M. C. “Binomial states of the quantized radiation
    field. Optica Acta: International Journal of Optics”, 32(3), 345355.
    (1985).
    [11] VidiellaBarranco,
    A., and Roversi, J. A. “Statistical and phase properties of the
    binomial states of the electromagnetic field”. Physical Review A, 50(6), 5233.
    (1994).
    [12] Dattoli, G., Gallardo, J., and Torre, A. “Binomial states of the quantized radiation
    field: comment.” JOSA B, 4(2), 185187.
    (1987).
    [13] Arecchi, F. T., Courtens, E., Gilmore, R., and Thomas, H. “Atomic coherent states
    in quantum optics.” Physical Review A, 6(6), 2211. (1972).
    [14] Gerry, C., Knight, P., and Knight, P. L. “Introductory quantum optics.” Cambridge
    university press. (2005).
    [15] Li, K. C., Meng, X. G., and Wang, J. S. “Phase Space Analysis of the Twomode
    Binomial State Produced by Quantum Entanglement in a Beamsplitter.” International
    Journal of Theoretical Physics, 110.
    (2019).
    [16] Lambert, N., Emary, C., and Brandes, T. “Entanglement and the phase transition
    in singlemode
    superradiance.” Physical Review Letters, 92(7), 073602. (2004).
    [17] Gilmore, R., Bowden, C. M., and Narducci, L. M. “Classicalquantum
    correspondence
    for multilevel systems.” Physical Review A, 12(3), 1019. (1975).
    [18] Jaynes, E. T., and Cummings, F. W. “ Comparison of quantum and semiclassical
    radiation theories with application to the beam maser.” Proceedings of the IEEE,
    51(1), 89109.
    (1963).
    [19] Wang, Y. K., and Hioe, F. T. “ Phase transition in the Dicke model of superradiance”.
    Physical Review A, 7(3), 831. (1973).
    [20] Rabi, I. I. “On the process of space quantization.” Physical Review, 49(4), 324.
    (1936).
    [21] R. H. Dicke, “Coherence in Spontaneous Radiation Processes,” Phys. Rev. 93, 99
    (1954).
    [22] M. Tavis and F. W. Cummings, “Exact Solution for an NMolecule—
    RadiationField
    Hamiltonian,” Phys. Rev. 170, 170 (1968).
    [23] Y. K. Wang and F. T. Hioe, “Phase Transition in the Dicke Model of Superradiance,”
    Phys. Rev. A 7, 831 (1973).
    [24] M. O. Scully, E. S. Fry, C. H. Raymond Ooi, and K. Wodkiewicz, “Directed Spontaneous
    Emission from an Extended Ensemble of N Atoms: Timing Is Everything,”
    Phys. Rev. Lett. 96, 010501 (2006).
    [25] M. O. Scully and A. Svdzinsky, “The Super of Superradiance,” Science 325, 1510
    (2009).
    [26] G. Chen, Z. Chen, and J.Q.
    Liang, “Groundstate
    properties for coupled BoseEinstein
    condensates inside a cavity quantum electrodynamics,” Europhys. Lett.
    80, 40004 (2007).
    [27] Q.H.
    Chen, T. Liu, Y.Y.
    Zhang, and K.L.
    Wang, “Quantum phase transitions in
    coupled twolevel
    atoms in a singlemode
    cavity,” Phys. Rev. A 82, 053841 (2010).
    [28] N. Lambert, C. Emary, and T. Brandes, “Entanglement and the Phase Transition
    in SingleMode
    Superradiance,” Phys. Rev. Lett. 92, 073602 (2004).
    [29] J. Vidal and S. Dusuel, “Finitesize
    scaling exponents in the Dicke model,” Europhys.
    Lett. 74, 817 (2006).
    [30] V. Buzek, M. Orszag, and M. Rosko, “Instability and Entanglement of the Ground
    State of the Dicke Model,” Phys. Rev. Lett. 94, 163601 (2005).
    [31] O. Tsyplyatyev and D. Loss, “Dicke model: Entanglement as a finite size effect,”
    J. Phys.: Conf. Ser. 193, 012134 (2009).
    [32] B. M. RodrıguezLara
    and R.K.
    Lee, “Quantum phase transition of nonlinear light
    in the finite size Dicke Hamiltonian,” J. Opt. Soc. Am. B 27, 2443 (2010).
    [33] R. A. Robles Robles, S. A. Chilingaryan, B. M. RodrıguezLara,
    and R.K.
    Lee,
    “Ground state in the finite Dicke model for interacting qubits,” Phys. Rev. A 91,
    033819 (2015).
    [34] S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50, No. 7,
    36 (1997).
    [35] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced
    transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
    [36] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical
    information storage in an atomic medium using halted light pulses,” Nature 409,
    490 (2001).
    [37] T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.Y.
    Lan, T. A. B. Kennedy, and
    A. Kuzmich, “Storage and retrieval of single photons transmitted between remote
    quantum memories,” Nature 438, 833 (2005).
    [38] M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M.
    D. Lukin, “Electromagnetically induced transparency with tunable singlephoton
    pulses,” Nature 438, 837 (2005).
    [39] K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura,
    A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,”
    Phys. Rev. Lett. 100, 093601 (2008).
    [40] J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum
    memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
    [41] Y.L.
    Chuang and R.K.
    Lee, “Conditions to preserve quantum entanglement of
    quadrature fluctuation fields in electromagnetically induced transparency media,”
    Opt. Lett. 34, 1537 (2009).
    [42] Y.L.
    Chuang, I. A. Yu, and R.K.
    Lee, “Quantum theory for pulse propagation
    in electromagneticallyinducedtransparency
    media beyond the adiabatic approximation,”
    Phys. Rev. A 91, 063818 (2015).
    [43] Y.L.
    Chuang, R.K.
    Lee, and I. A. Yu, “Opticaldensityenhanced
    squeezedlight
    generation without optical cavities,” Phys. Rev. A 96, 053818 (2017).
    [44] Y.L.
    Chuang, R.K.
    Lee, and I. A. Yu, ”Generation of Quantum Entanglement
    based on Electromagnetically Induced Transparency Media,” arXiv: 1906.12025
    (2019).
    [45] M. Hayn and T. Brandes, “Thermodynamics and superradiant phase transitions in
    a threelevel
    Dicke model,” Phys. Rev. E 95, 012153 (2017).
    [46] K. R. Brown, K. M. Dani, D. M. StamperKurn,
    and K. B. Whaley, ”Deterministic
    optical Fockstate
    generation.” Phys. Rev. A 67, 043818 (2003).
    [47] H. J. Lipkin, N. Meshkov, and A. J. Glick, “Validity of manybody
    approximation
    methods for a solvable model. (I). Exact solutions and perturbation theory,”
    Nucl. Phys. 62, 188 (1965); N. Meshkov, A. J. Glick, and H. J. Lipkin, “Validity of
    manybody
    approximation methods for a solvable model: (II). Linearization procedures,”
    Nucl. Phys. 62, 199 (1965); A. J. Glick, H. J. Lipkin, and N. Meshkov,
    “Validity of manybody
    approximation methods for a solvable model: (III). Diagram
    summations,” Nucl. Phys. 62, 211 (1965).
    [48] Welsch, D. G., Vogel, W., Opatrny, T. (1999). “II Homodyne detection and
    quantumstate
    reconstruction.” Progress in Optics (Vol. 39, pp. 63211).
    Elsevier.
    [49] Lvovsky, A. I. (2004). “Iterative maximumlikelihood
    reconstruction in quantum
    homodyne tomography.” Journal of Optics B: Quantum and Semiclassical Optics,
    6(6), S556
    [50] Leonhardt, U., Paul, H., d’Ariano, G. M. (1995).“ Tomographic reconstruction of
    the density matrix via pattern functions. Physical Review A, 52(6), 4899.
    [51] Smithey, D. T., Beck, M., Raymer, M. G., Faridani, A. (1993). “Measurement
    of the Wigner distribution and the density matrix of a light mode using optical
    homodyne tomography: Application to squeezed states and the vacuum. Physical
    review letters, 70(9), 1244.
    [52] d’Ariano, G. M., Macchiavello, C., Paris, M. G. A. “ Detection of the density
    matrix through optical homodyne tomography without filtered back projection.”
    Physical Review A, 50(5), 4298.(1994).
    [53] Tiunov, E. S., Tiunova, V. V., Ulanov, A. E., Lvovsky, A. I., “ Fedorov, A. K.
    “ Experimental quantum homodyne tomography via machine learning.” Optica,
    7(5), 448454.(
    2020).
    [54] Gardiner, C., Zoller, P., Zoller, P..“ Quantum noise: a handbook of Markovian and
    nonMarkovian
    quantum stochastic methods with applications to quantum optics.”
    Springer Science and Business Media. (2004)
    [55] Vogel, K., Risken, H.. “Determination of quasiprobability distributions in terms
    of probability distributions for the rotated quadrature phase.” Physical Review A,
    40(5), 2847. (1989)
    [56] Titchmarsh, E. C. . “ Some integrals involving Hermite polynomials.” Journal of
    the London Mathematical Society, 1(1), 1516.
    (1948)
    [57] Shepp, L. A., and Logan, B. F. (1974). “The Fourier reconstruction of a head section.”
    IEEE Transactions on nuclear science, 21(3), 2143.

    QR CODE