簡易檢索 / 詳目顯示

研究生: 謝宗翰
Hsieh, Zong-Han.
論文名稱: 超音波光導系統用於改善散射環境中光傳遞之應用
Applications of the Ultrasonic Light Guide System for Improvement of Light Delivery in Scattering Medium
指導教授: 葉秩光
Yeh, Chih-Kuang
口試委員: 李夢麟
Li, Meng-Lin
范景翔
Fan, Ching-Hsiang
鄭耿璽
Jeng, Geng-Shi
陳之碩
Chen, Chi-Shuo
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 60
中文關鍵詞: 海扶光導系統熱效應機械效應聚四氟乙烯納米粒子
外文關鍵詞: HIFU, light guide system, thermal effect, mechanical effects, PTFE NPs
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自 20 世紀初以來,光學技術已被大量用於生物醫學領域。然而光在生物組織中的穿透性被蛋白質、脂質或組織結構引起的強散射嚴重限制,在臨床應用中的發展也因此受限。為了克服基本物理限制,本研究提出了超音波光學特性調製方法來增強光在散射介質中的能量傳遞。由於超音波的無創、可控和定位特性,高強度聚焦超音波(海扶)誘導的熱效應和機械效應被分別用於測試其作為光導的潛力。在第一章中,首先回顧了過去用於提高生物組織光穿透的策略。在第二章中,超音波在散射仿體中產生加熱通道,以改進測試光在散射環境中的傳輸。結果表明,由於熱效應導致散射仿體中的散射係數降低,光通量因此增加了 3%。在第三章中,超音波被用於在強散射仿體中產生微氣泡,以提供低散射通道來增加光傳遞效率。結果表明,在聚四氟乙烯納米粒子(PTFE NPs)的幫助下,可以使用相對較低能量的超音波來達成微氣泡的生成並獲得6.2%的光通量增加。綜上所述,本研究建立了兩個實時、無創、可控、可定位、可回復、並具有生物安全性的超音波光導系統來解決組織仿體中的散射問題。此系統在模擬和實驗部分都呈現出正面的結果。因此這些方法很有機會能與其他光學技術例如雙光子顯微成像系統、高分辨率光學顯微圖像或光熱療法結合,以實現改善光穿透深度的效果。


    Optical technologies have been used in the biomedical field since the early 20 century. However, the strong scattering due to the protein, lipid, or tissue structure severely limits the light penetration in biological tissues and restricts its development in clinical applications. In order to overcome this physical constraint, the ultrasonic optical properties modulation method was proposed to enhance the energy delivery of the light in the scattering medium. Due to the noninvasive, controllable, and localization features of ultrasound, thermal and mechanical effects induced by high-intensity focused ultrasound (HIFU) were selected to test their potential as light-guiding methods, respectively. In chapter 1, the previous strategies to improve the light penetration in the biological tissues were firstly reviewed. In chapter 2, the ultrasound-induced heating tunnel was generated in the scattering phantom to test the improvement of the light delivery. The results demonstrate a 3% fluence increase due to the thermal effect induced scattering coefficient reduction in the scattering phantom. In chapter 3, ultrasound-induced microbubbles were generated in the strong scattering phantom to provide a low scattering tunnel to increase the light propagation. The results suggest that with the assistance of the polytetrafluoroethylene nanoparticles (PTFE NPs), relatively low energy ultrasound energy can be used to achieve microbubble generation and obtain a 6.2% increase of fluence. In summary, two real-time, noninvasive, and controllable, localization, revisable, and biosafety ultrasonic light guide systems were established to solve the scattering issue in the tissue mimic phantom. Both simulation and experiment present positive results as a light guide system. As a result, these methods have the potential to combine with other optical technologies such as two-photon microscopic imaging systems, high-resolution optical microscopy images, or photothermal therapy to improve the light penetration in their applications.

    Context List of Figures 1 List of Tables 4 Chapter1 5 Introduction 5 1.1 The application of the light in the biomedical field 5 1.2 Light delivery in biological tissue 6 1.3 The strategy to improve the light penetration in the biological tissues 8 1.3.1 Wavefront shaping technique 8 1.3.2 Optical properties modulation 9 1.3.3 Ultrasonic light guide system 10 1.4 The aim of this dissertation 10 1.4.1 Ultrasound induced thermal effects 12 1.4.2 Ultrasound induced mechanical effects 12 Chapter2 14 Improvement of light penetration in biological tissue using an ultrasound-induced heating tunnel 14 2.1 Introduction 14 2.2 Materials and methods 15 2.2.1 Optical scattering coefficients modulation due to the thermal effect 15 2.2.2 Acoustic parameter measurement 16 2.2.3 Monte Carlo simulation 17 2.2.4 Intralipid phantom fabrication 21 2.2.5 Inertial cavitation detection 22 2.2.6 Laser fluence measurement 24 2.2.7 Photoacoustic experiments 25 2.3 Results 27 2.3.1 Acoustic parameter measurement 27 2.3.2 Monte Carlo simulation results 28 2.3.3 Inertial cavitation detection during heating 29 2.3.4 Fluence enhancement by HIFU heating tunnel 30 2.3.5 Photoacoustic signal improvement by HIFU heating tunnel 31 2.4 Discussion 32 Chapter3 34 Ultrasound-guided system for light focusing using microbubbles generated from polytetrafluoroethylene nanoparticles 34 3.1 Introduction 34 3.2 Materials and methods 35 3.2.1 Monte Carlo simulation setup 35 3.2.2 The PTFE-intralipid solution fabrication 37 3.2.3 Inertial cavitation dose measurement 39 3.2.4 High-speed camera image 40 3.2.5 Light fluence measurement 41 3.3 Results 42 3.3.1 Monte Carlo simulation results 42 3.3.2 Inertial cavitation dose for bubble generation 44 3.3.3 High-speed image of the microbubble 45 3.3.4 Light fluence increased by μm size bubbles 45 3.4 Discussion 47 Chapter4 49 Discussion 49 Chapter5 50 Conclusions and Future Work 50 References 51 List of Publications 60

    1. Yun, S. H. &Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nature Biomedical Engineering 1, (2017).
    2. Au, L. et al. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2, 1645–1652 (2008).
    3. Gupta, N. &Malviya, R. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochimica et Biophysica Acta - Reviews on Cancer 1875, 188532 (2021).
    4. McDonald, F. A. &Wetsel, G. C. Generalized theory of the photoacoustic effect. Journal of Applied Physics 49, 2313–2322 (1978).
    5. Beard, P. Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011).
    6. Finlay, J. C., Cengel, K., Busch, T. M. &Zhu, T. C. Photodynamic therapy. Handbook of Biomedical Optics 90, 733–750 (2016).
    7. Felsher, D. W. Cancer revoked: Oncogenes as therapeutic targets. Nature Reviews Cancer 3, 375–380 (2003).
    8. Sahel, J. A. et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nature Medicine 27, 1223–1229 (2021).
    9. Miesenböck, G. The optogenetic catechism. Science 326, 395–399 (2009).
    10. Lakowicz, J. R. Principles of Fluorescence Spectroscopy. Principles of Fluorescence Spectroscopy (1999). doi:10.1007/978-1-4757-3061-6
    11. Wang, S. et al. Fluorescence imaging of pathophysiological microenvironments. Chemical Society Reviews 50, 8887–8902 (2021).
    12. Verschueren, H. Interference reflection microscopy in cell biology: methodology and applications. Journal of Cell Science 75, 279–301 (1985).
    13. Meng, X. et al. Micromirror Total Internal Reflection Microscopy for High-Performance Single Particle Tracking at Interfaces. ACS Photonics 8, 3111–3118 (2021).
    14. Tkachenko, N.V. Optical spectroscopy: methods and instrumentations. (Elsevier, 2006).
    15. Nicolson, F., Kircher, M. F., Stone, N. &Matousek, P. Spatially offset Raman spectroscopy for biomedical applications. Chemical Society Reviews 50, 556–568 (2021).
    16. Wu, C., Zhou, S. &Wang, W. A dynamic laser light‐scattering study of chitosan in aqueous solution. Biopolymers 35, 385–392 (1995).
    17. Zhang, B., Wang, C., Song, Z. L., Xu, C. L. &He, Z. Z. Determination of particle size distribution based on dynamic light scattering measurements in the near field. Optics and Lasers in Engineering 127, 105980 (2020).
    18. Huang, D. et al. Optical Coherence. 1–4 (1991).
    19. Mourant, J. R. et al. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Applied Optics 37, 3586 (1998).
    20. JIE, H., CHENG, J.-X. Vibrational Potoacoustic Microscopy: Converting Molecular Vibration to Mechanical for Deep-Tissue Imaging. BioOptics World 4 (2014).
    21. Landa, F. J. O., Deán-Ben, X. L., Sroka, R. &Razansky, D. Volumetric Optoacoustic Temperature Mapping in Photothermal Therapy. Scientific Reports 7, 1–8 (2017).
    22. Schmitt, J. M. &Kumar, G. Optical scattering properties of soft tissue: a discrete particle model. Applied Optics 37, 2788 (1998).
    23. Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nature Methods 7, 603–614 (2010).
    24. Cheong, W. F., Prahl, S. A. &Welch, A. J. A Review of the Optical Properties of Biological Tissues. IEEE Journal of Quantum Electronics 26, 2166–2185 (1990).
    25. Jacques, S. L. Optical properties of biological tissues: A review. Physics in Medicine and Biology 58, 5007–5008 (2013).
    26. Yu, H. et al. Recent advances in wavefront shaping techniques for biomedical applications. Current Applied Physics 15, 632–641 (2015).
    27. Park, J. H., Yu, Z., Lee, K. R., Lai, P. &Park, Y. K. Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward in vivo applications. APL Photonics 3, (2018).
    28. Ahn, C. et al. Overcoming the penetration depth limit in optical microscopy: Adaptive optics and wavefront shaping. Journal of Innovative Optical Health Sciences 12, 1–18 (2019).
    29. Xu, X., Liu, H. &Wang, L.V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photonics 5, 154–157 (2011).
    30. Wang, Y. M., Judkewitz, B., Dimarzio, C. A. &Yang, C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nature Communications 3, 928 (2012).
    31. Ruan, H., Jang, M. &Yang, C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light. Nature Communications 6, 1–8 (2015).
    32. Zhu, D., Larin, K.V., Luo, Q. &Tuchin, V.V. Recent progress in tissue optical clearing. Laser and Photonics Reviews 7, 732–757 (2013).
    33. Weny, X., Maoy, Z., Han, Z., Tuchin, V.V. &Zhu, D. In vivo skin optical clearing by glycerol solutions: Mechanism. Journal of Biophotonics 3, 44–52 (2010).
    34. Proskurin, S. G. &Meglinski, I.V. Optical coherence tomography imaging depth enhancement by superficial skin optical clearing. Laser Physics Letters 4, 824–826 (2007).
    35. Genina, E. A., Bashkatov, A. N., Sinichkin, Y. P. &Tuchin, V.V. Optical clearing of the eye sclera in vivo caused by glucose . Quantum Electronics 36, 1119–1124 (2006).
    36. Wang, J. et al. Sugar-induced skin optical clearing: From Molecular dynamics simulation to experimental demonstration. IEEE Journal on Selected Topics in Quantum Electronics 20, 256–262 (2014).
    37. Genina, E. A., Bashkatov, A. N. &Tuchin, V.V. Tissue optical immersion clearing. Expert Review of Medical Devices 7, 825–842 (2010).
    38. Izquierdo-Román, A., Vogt, W. C., Hyacinth, L. &Rylander, C. G. Mechanical tissue optical clearing technique increases imaging resolution and contrast through Ex vivo porcine skin. Lasers in Surgery and Medicine 43, 814–823 (2011).
    39. Yoon, J. et al. A physical method to enhance transdermal delivery of a tissue optical clearing agent: Combination of microneedling and sonophoresis. Lasers in Surgery and Medicine 42, 412–417 (2010).
    40. Rylander, C. G., Milner, T. E., Baranov, S. A. &Nelson, J. S. Mechanical tissue optical clearing devices: Enhancement of light penetration in ex vivo porcine skin and adipose tissue. Lasers in Surgery and Medicine 40, 688–694 (2008).
    41. Laufer, J., Simpson, R., Kohl, M., Essenpreis, M. &Cope, M. Effect of temperature on the optical properties of ex vivo human dermis and subdermis. Physics in Medicine and Biology 43, 2479–2489 (1998).
    42. Cletus, B., Künnemeyer, R., Martinsen, P. &McGlone, V. A. Temperature-dependent optical properties of Intralipid® measured with frequency-domain photon-migration spectroscopy. Journal of Biomedical Optics 15, 017003 (2010).
    43. Drew, C., Milner, T. E. &Rylander, C. G. Mechanical tissue optical clearing devices: evaluation of enhanced light penetration in skin using optical coherence tomography. Journal of Biomedical Optics 14, 064019 (2009).
    44. Antonov, S. N. &Kotelnikov, V. A. A review of physical principles and applications of acousto-optic deflectors on the basis paratellurite. 3, 235–249 (2019).
    45. Chamanzar, M. et al. Ultrasonic sculpting of virtual optical waveguides in tissue. Nature Communications 10, 1–10 (2019).
    46. Orsi, F. et al. High-intensity focused ultrasound ablation: Effective and safe therapy for solid tumors in difficult locations. American Journal of Roentgenology 195, 245–252 (2010).
    47. Natale, A. et al. First human experience with pulmonary vein isolation using a through-the-balloon circumferential ultrasound ablation system for recurrent atrial fibrillation. Circulation 102, 1879–1882 (2000).
    48. Zhou, M., Chen, J. Y., Tang, L. D., Chen, W. Z. &Wang, Z. B. Ultrasound-guided high-intensity focused ultrasound ablation for adenomyosis: The clinical experience of a single center. Fertility and Sterility 95, 900–905 (2011).
    49. Wells, P. N. T. Ultrasound imaging. Physics in Medicine and Biology 51, (2006).
    50. Duck, F. A. The Meaning of Thermal Index (TI) and Mechanical Index (MI) Values. Ultrasound 5, 36–40 (1997).
    51. Miller, M. W., Miller, D. L. &Brayman, A. A. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound in Medicine and Biology 22, 1131–1154 (1996).
    52. Meltzer, R. S. Food and Drug Administration ultrasound device regulation: the output display standard, the ‘mechanical index,’ and ultrasound safety. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography 9, 216–220 (1996).
    53. vanStaveren, H. J., Moes, C. J. M., vanMarie, J., Prahl, S. A. &vanGemert, M. J. C. Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm. Applied Optics 30, 4507 (1991).
    54. Hsieh, Z. H., Fan, C. H., Ho, Y. J., Li, M. L. &Yeh, C. K. Improvement of light penetration in biological tissue using an ultrasound-induced heating tunnel. Scientific Reports 10, 1–8 (2020).
    55. Mantsch, H. H., Madec, C., Lewis, R. N. &McElhaney, R. N. Thermotropic Phase Behavior of Model Membranes Composed of Phosphatidylcholines Containing dl-Methyl Anteisobranched Fatty Acids. 2. An Infrared Spectroscopy Study. Biochemistry 26, 4045–4049 (1987).
    56. Tuchin, V. Tissue Optics and Photonics: Light-Tissue Interaction. Journal of Biomedical Photonics & Engineering 2, 030201 (2016).
    57. Leary, Brendan, Vaezy &Shahram. Marketing Clearance of Diagnostic Ultrasound Systems and Transducers Guidance for Industry and Food and Drug Administration Staff This guidance document supersedes the guidance entitled "Information for Manufacturers Seeking Marketing Clearance of Diagnos. Fda (2008).
    58. Hokanson, D. E. Monte Carlo modeling of light transport in tissue (Steady state and time of flight). in Optical-thermal response of laser-irradiated tissue. 109–144 (2011).
    59. Swinehart, D. F. The Beer-Lambert law. Journal of Chemical Education 39, 333–335 (1962).
    60. Binzoni, T., Leung, T. S., Gandjbakhche, A. H., Rüfenacht, D. &Delpy, D. T. The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics. Physics in Medicine and Biology 51, (2006).
    61. Fang, Q. &Boas, D. A. Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units. Optics Express 17, 20178 (2009).
    62. Foiret, J. &Ferrara, K. W. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation , Phantom Study. 1–22 (2015).
    63. Flock, S. T., Jacques, S. L., Wilson, B. C., Star, W. M., & van Gemert, M. J. Optical properties of Intralipid: a phantom medium for light propagation studies. Lasers in Surgery and Medicine 12, 510-519. (1992).
    64. Xu, Z., Hall, T. L., Fowlkes, J. B. &Cain, C. A. Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy). The Journal of the Acoustical Society of America 122, 229–236 (2007).
    65. Xu, Z., Hall, T. L., Fowlkes, J. B. &Cain, C. A. Optical and acoustic monitoring of bubble cloud dynamics at a tissue-fluid interface in ultrasound tissue erosion. The Journal of the Acoustical Society of America 121, 2421–2430 (2007).
    66. Viator, J. A., Jacques, S. L. &Prahl, S. A. Depth profiling of absorbing soft materials using photoacoustic methods. IEEE Journal on Selected Topics in Quantum Electronics 5, 989–996 (1999).
    67. Diederich, C. J. Thermal ablation and high-temperature thermal therapy: Overview of technology and clinical implementation. in International Journal of Hyperthermia 21, 745–753 (2005).
    68. Miller, D. L. Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation. Progress in Biophysics and Molecular Biology 93, 314–330 (2007).
    69. Raymond, J. L., Cleveland, R. O. &Roy, R. A. HIFU-induced changes in optical scattering and absorption of tissue over nine orders of thermal dose. Physics in Medicine and Biology 63, (2018).
    70. Laufer, J., Simpson, R., Kohl, M., Essenpreis, M. &Cope, M. Effect of temperature on the optical properties of ex vivo human dermis and subdermis. Phys. Med. Biol. 43, 2479–2489 (1998).
    71. Kim, H. &Chang, J. H. Increased light penetration due to ultrasound-induced air bubbles in optical scattering media. Scientific Reports 7, 1–8 (2017).
    72. Church, C. C. Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound in Medicine and Biology 28, 1349–1364 (2002).
    73. Assadi, H., Karshafian, R. &Douplik, A. Optical scattering properties of intralipid phantom in presence of encapsulated microbubbles. International Journal of Photoenergy 2014, (2014).
    74. Leung, T. S., Honeysett, J. E., Stride, E. &Deng, J. Light propagation in a turbid medium with insonified microbubbles. Journal of Biomedical Optics 18, 015002 (2013).
    75. Jin, Q., Kang, S. T., Chang, Y. C., Zheng, H. &Yeh, C. K. Inertial cavitation initiated by polytetrafluoroethylene nanoparticles under pulsed ultrasound stimulation. Ultrasonics Sonochemistry 32, 1–7 (2016).
    76. Jin, Q., Lin, C. Y., Chang, Y. C., Yang, C. M. &Yeh, C. K. Roles of Textural and Surface Properties of Nanoparticles in Ultrasound-Responsive Systems. Langmuir 34, 1256–1265 (2018).
    77. Hsieh, Z. H., Fan, C. H., Li, M. L. &Yeh, C. K. Ultrasound-guided system for light focusing using microbubbles generated from polytetrafluoroethylene nanoparticles. Applied Physics Letters 120, (2022).
    78. Marston, P. L., Langley, D. S. &Kingsbury, D. L. Light scattering by bubbles in liquids: Mie theory, physical-optics approximations, and experiments. Applied Scientific Research 38, 373–383 (1982).
    79. Chen, W. S., Brayman, A. A., Matula, T. J. &Crum, L. A. Inertial cavitation dose and hemolysis produced in vitro with or without Optison®. Ultrasound in Medicine and Biology 29, 725–737 (2003).
    80. Cho, E. E., Drazic, J., Ganguly, M., Stefanovic, B. &Hynynen, K. Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood-brain barrier opening. Journal of Cerebral Blood Flow and Metabolism 31, 1852–1862 (2011).
    81. Arvanitis, C. D. et al. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood–tumor barrier disruption. Proceedings of the National Academy of Sciences of the United States of America 115, E8717–E8726 (2018).
    82. Zou, L. et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6, 762–772 (2016).

    QR CODE