研究生: |
黃俊賢 Huang, chun-hsien |
---|---|
論文名稱: |
模板法製備規則孔洞碳材料及其能源應用 Template-directed fabrication of ordered porous carbon materials for energy applications |
指導教授: |
董瑞安
Doong, Ruey-an |
口試委員: |
劉尚斌
林弘萍 戴念華 胡啟章 楊家銘 董瑞安 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 255 |
中文關鍵詞: | 模板法 、規則孔洞 、碳材料 、石墨化 、二氧化鈦 、超級電容器 、鋰離子電池 、染料敏化太陽能電池 |
外文關鍵詞: | Template method, Ordered porous, Carbon material, Graphitization, Titanium dioxide, Supercapacitor, Lithium-ion battery, Dye-sensitized solar cell |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
21世紀人類面臨能源、資源逐漸匱乏及環境污染的困境,其中最大的挑戰之一是開發具有高效率的能源轉換與儲存系統,例如超級電容器,鋰離子電池,染料敏化太陽能電池。自從1999年規則中孔洞碳材料的發現,此類材料的設計與應用創新已為科學研究提供了新的研究思維。為提升孔洞碳材料在能源領域的使用效能,孔洞結構及其功能化的設計已成為近年來規則中孔洞碳材料在能源應用上主要的研究方向。因此,本研究主要的目標是利用軟/硬模板合成法製備階層式規則孔洞碳材料以及規則中孔洞鈦基材料-碳複合材料,同時利用各種表面鑑定技術評估材料的物化特性,以期能將所開發的孔洞碳材料應用於能源貯存及轉換領域。材料合成採用三嵌段高分子F127以及微米級聚苯乙烯小球分別做為中孔洞及大孔洞模板,酚醛樹脂為碳的前驅物;經由溶劑揮發誘導有機-有機(酚醛樹脂-三嵌段高分子)或有機-有機-無機(酚醛樹脂-三嵌段高分子-氧化鈦前驅物)自組裝形成規則中孔洞結構。
研究結果發現本研究所開發的技術可透過雙模板及溶劑揮發自組裝法製備階層式規則孔洞碳材料,其階層規則的孔洞結構包含規則的大孔結構及互相連結的孔洞結構系統(大孔窗口、規則中孔洞以及微孔)。透過金屬Ni奈米顆粒的催化,在1000ºC即可將階層孔洞碳材料部分碳材轉化為石墨化結構(HOPC-Ni-1000-g;g表石墨結構、1000表熱裂解溫度),同時仍保有三維孔結構以及磁性分離的特性。SEM/TEM及XRD結果發現階層規則的孔洞包含有規則的大孔結構(220 nm)及互相連結的孔洞結構系統(大孔窗口、規則中孔洞(4.7 nm)以及微孔),此孔洞結構可做為離子緩衝空間以及離子傳輸通道,且由於碳材料中含有金屬鎳,因此具有磁性分離特性(3.8 emu/g),相當適合作為超級電容器及染料敏化太陽能電池的先進電極材料。在超級電容器的電性測試方面,雖然HOPC-Ni-1000-g的比表面積只有296 m2/g,因此其電容值在掃瞄速率3 mV/s只達73.4 F/g;但在高掃描速率下(200 mV/s)的電容值仍可保有47.1 F/g。並且具有較佳的電解液通透性質(24.8 μF/cm2 at 3 mV/s)以及重覆循環掃描效能(>5400 cycles)。當配合利用微波輔助水熱法製備出的TiO2奈米顆粒作為工作電極,而HOPC-Ni-1000-g為對電極組成染料敏化太陽能電池時,HOPC-Ni-1000-g對電解液(I3-)具有良好的電化學催化特性,且元件在標準光譜(AM 1.5G, 100 mW/cm2)量測下的光電轉換效率可達5.2%,接近使用Pt做為對電極的太陽能電池效率(6.7%)。
另利用軟模板結合溶劑揮發誘導自組裝法,可成功製備出規則中孔洞鈦基材料-碳複合材料,其中鈦基奈米晶體顆粒嵌入在無定形的碳骨架結構中,並往孔道空間成長。本研究發現碳含量(25, 35, and 50 wt%)、熱裂解溫度(450-1200ºC)、以及熱裂解氣氛(N2 及 Ar)對材料的熱穩定性以及鈦基奈米晶體的晶相轉換有相當大的影響。當碳含量低於35 wt%,鈦基奈米晶體會由anatase轉換為rutile,Magneli phases,以及TiN (熱裂解氣氛為: N2)或具有缺陷的TiCx (x< 1,熱裂解氣氛為: Ar)。當碳含量為50 wt%,鈦基奈米晶體會由anatase轉換為TiN (熱裂解氣氛N2)或TiC(熱裂解氣氛Ar)。研究結果也發現,氧化鈦奈米晶體與碳材料結合後,在不同的熱裂解氣氛下經由高溫處理能夠轉變為Magneli、TiN或TiC晶相,但由於晶體的成長也會導致孔洞材料的規則結構被破壞。此規則中孔洞二氧化鈦-碳複合材料具有均一的孔徑大小、高比表面積和孔體積、開放與連續的孔洞結構等性質有助於鋰離子的嵌入/嵌出與電解液的擴散,進而提升鋰離子遷移速率及提高鋰離子電池的效能。研究發現65Ti-35C複合材料(含有65 wt%的二氧化鈦以及35 wt%的碳)對鋰離子電池具有最佳的電化學活性,在0.1C的充放電速率且經過80次的循環掃描後仍具有500 mAh/g的電容值,此外,在充放電速率達到5C時,其電容值可達98 mAh/g。本研究結果明確顯示,階層式規則孔洞碳材料以及規則中孔洞鈦基材料-碳複合材料為相當具有新穎性及發展潛力的孔洞碳材料且可應用做為能源電極材料使用於能源轉換及貯存系統包括鋰離子電池、超級電容器及染料敏化太陽能電池等。這些材料明確的合成方法與物化特性及多功能性,將能提昇規則孔洞碳材料的研究發展能量,將之實際應用於能源貯存及轉換系統。
In response to the needs of modern society and emerging ecological concerns, one of the biggest challenges in 21st century is to develop powerful electrochemical energy conversion and storage devices, such as supercapacitor, lithium-ion battery, and dye-sensitized solar cell. The introduction of ordered mesoporous carbon in the 1999 opens a new chapter in material sciences, and the significant progress made during the past decade in the design and application of ordered mesoporous carbon has provided fresh incentives for further innovations. A noteworthy is the fact that the required disruptive improvement in energy and environmental science has motivated the design of porous architecture and functionality of porous carbons through the aid of suitable templates and by introducing procedures for carbon framework functionality. The major goal of this study is to establish the synthesis protocols, the soft- and hard-templating strategies, in the fabrication of hierarchically-ordered porous carbons with graphitic nanostructures and ordered mesoporous titanium based materials-carbon composites, and to evaluate their physicochemical properties by many characterization methods. The soft- and hard-templating strategies are employed to fabricate porous carbon materials with hierarchically ordered porous structure and ordered mesoporous TiO2-carbon composites. Herein, the amphiphilic triblock copolymer Pluronic F127 and micro-sized polystyrene sphere were used as mesopore and macropore template, respectively. The phenol-formaldehyde resins were used as carbon precursor. The formation of ordered mesoporous structure was relied on organic-organic (PF resin-F127) or organic-organic-inorganic (PF resin-F127-TiO2 precursor) evaporation-induced self-assembly process (EISA).
Three-dimensional, magnetically-separable, and hierarchically ordered porous carbon (HOPC) with designed porous textures has been successfully fabricated by dual-templating method with EISA. In addition, in order to obtain graphitic structure in hierarchically ordered porous carbon, the Ni species was used as catalyst for graphitization. The roles of Ni catalyst and pyrolysis temperature (600-1200ºC) and atmosphere (N2 or H2/N2) in the microstructures of hierarchically ordered porous carbon were elucidated. The synthesized HOPC-Ni-1000-g material (g=graphitic, 1000pyrolysis temperature of 1000°C) exhibits well-crystallized graphitic domains, excellent magnetic properties (3.8 emu/g), and designed porous textures. The designed porous textures of the hierarchically ordered porous carbons are composed of highly ordered, macroporous (220 nm), interconnected porous structures, including macroporous windows, hexagonally ordered mesopores (4.7 nm), and useful micropores. The HOPC with graphitic nanostructure has designed porous texture, serving as an ion-buffering reservoir, an ion-transport channel, and a charge-storage material, and is expected to be advanced an electrode material for high-rate supercapacitor and dye-sensitized solar cells (DSSCs). In supercapacitor, HOPC-Ni-1000-g has a low specific surface area (296 m2/g) and a low gravimetric specific capacitance (73.4 F/g at 3 mV/s), but improved electrical conductivity, better rate performance (47.1 F/g at 200 mV/s), higher electrolyte accessibility (24.8 μF/cm2 at 3 mV/s), and excellent cycling performance (>5400 cycles). In DSSCs, HOPC-Ni-1000-g counter electrode exhibits higher electrocatalytic activity towards I3- reduction. The photovoltaic conversion efficiency of the cell using HOPC-Ni-1000-g counter electrode reaches 5.2 % at one sun (AM 1.5G, 100 mW/cm2) which is close to that (6.7 %) of cell using conventional Pt counter electrode.
The ordered mesoporous titanium based materials (anatase, rutile, Magneli phases, TiN and TiC)-carbon composites (Ti-C) have directly fabricated by supramolecular self-assembly with in-situ crystallization process. The titanium based materials are embedded into the frameworks of carbonaceous matrix. Importantly, the carbon content (25, 35, and 50 wt%), pyrolysis temperature (450-1200ºC), and pyrolysis atmosphere (N2 and Ar) have significant effects on the thermal stability, crystalline phase and crystallinity of Ti-based materials. The crystalline phase changes from anatase, rutile, Magneli phases, and then to TiN (pyrolysis in N2) or defect carbide TiCx (x< 1, pyrolysis in Ar) as the carbon content in nanocomposites is lower than 35 wt%; the crystalline phase of Ti-C composites at 50 wt % carbon content changes directly from anatase to TiN (pyrolysis in N2) or TiC (pyrolysis in Ar). Magneli products, TiN, or TiC materials were formed as the carbothermal reduction of TiO2 at high pyrolysis temperature, unfortunately, the composites lose the ordered mesostructures. The results allow us to elucidate the microstructural changes of titanium based materials inside the ordered mesoporous carbon matrices and open an avenue to the design and synthesis of cooperatively functional ordered mesoporous nanomaterials-carbon composites. In addition, it is advantageous to use ordered mesoporous TiO2-carbon composites as electrode materials for rechargeable Li-ion battery. A series of Ti-C composites with various weight percentages of carbon (25, 35, and 50 wt%) pyrolyzed at 600°C were utilized to evaluate the Li-ion storage performance. The 65Ti-35C material, containing 65 wt% TiO2 and 35 wt% carbon, shows a high capacity of 500 mAhg-1 at 0.1 C after 80 cycles. Moreover, it exhibits a good cyclability and rate capability. The reversible capacity remains at 98 mAh/g at a high rate of 5.0 C, and then recoveries to 520 mAh/g at 0.1 C after 105 cycles.
In conclusion, the materials fabricated in this study are attractive materials and ideal candidates for manifold applications. The versatility and feasibility of these materials have been demonstrated, especially their application to energy storage and conversion. Much effort has to be devoted to systematic studies on the relationship between physicochemical properties of these materials and their performances in energy conversion and storage so that information on the fabrication strategies, properties, and potential applications of these materials can be obtained to stimulate further developments in this fascinating area.
[1] Bottani, E. J. and Tascón, J. M. D., Adsorption by carbons, 1st ed., Elsevier, Amsterdam ; Boston ; London, 2008.
[2] Liang, C. D., Li, Z. J. and Dai, S., Mesoporous carbon materials: Synthesis and modification. Angewandte Chemie-International Edition 2008, 47, (20), 3696-3717.
[3] Inagaki, M., Orikasa, H. and Morishita, T., Morphology and pore control in carbon materials via templating. RSC Advances 2011, 1, (9), 1620-1640.
[4] Xia, Y., Yang, Z. and Mokaya, R., Templated nanoscale porous carbons. Nanoscale 2010, 2, (5), 639-659.
[5] Lu, A. H., Zhao, D. Y. and Wang, Y., in Nanocasting: A versatile strategy for creating nanostructured porous materials, Cambridge : Royal Society of Chemistry, 2010.
[6] Su, F. B., Zhou, Z. C., Guo, W. P., Liu, J. J., Tian, X. N. and Zhao, X. S., in Chemistry and physics of carbon, vol 30, Vol. 30 (Ed.: Radovic, L. R.), 2008, pp. 63-128.
[7] Lu, A. H. and Schuth, F., Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials 2006, 18, (14), 1793-1805.
[8] Nishihara, H. and Kyotani, T., Templated nanocarbons for energy storage. Advanced Materials 2012, 24, (33), 4473-4498.
[9] Zhai, Y., Dou, Y., Zhao, D., Fulvio, P. F., Mayes, R. T. and Dai, S., Carbon materials for chemical capacitive energy storage. Advanced Materials 2011, 23, (42), 4828-4850.
[10] Su, D. S. and Schlogl, R., Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 2010, 3, (2), 136-168.
[11] Inagaki, M., Konno, H. and Tanaike, O., Carbon materials for electrochemical capacitors. Journal of Power Sources 2010, 195, (24), 7880-7903.
[12] Stein, A., Wang, Z. Y. and Fierke, M. A., Functionalization of porous carbon materials with designed pore architecture. Advanced Materials 2009, 21, (3), 265-293.
[13] Lee, J., Kim, J. and Hyeon, T., Recent progress in the synthesis of porous carbon materials. Advanced Materials 2006, 18, (16), 2073-2094.
[14] Taguchi, A. and Schuth, F., Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials 2005, 77, (1), 1-45.
[15] Ariga, K., Ishihara, S., Abe, H., Li, M. and Hill, J. P., Materials nanoarchitectonics for environmental remediation and sensing. Journal of Materials Chemistry 2012, 22, (6), 2369-2377.
[16] Navalon, S., Dhakshinamoorthy, A., Alvaro, M. and Garcia, H., Heterogeneous fenton catalysts based on activated carbon and related materials. Chemsuschem 2012, 4, (12), 1712-1730.
[17] Yao, J. Y., Li, L. X., Song, H. H., Liu, C. Y. and Chen, X. H., Synthesis of magnetically separable ordered mesoporous carbons from f127/[ni(h2o)(6)](no3)(2)/resorcinol-formaldehyde composites. Carbon 2009, 47, (2), 436-444.
[18] Huang, C. H., Gu, D., Zhao, D. Y. and Doong, R. A., Direct synthesis of controllable microstructures of thermally stable and ordered mesoporous crystalline titanium oxides and carbide/carbon composites. Chemistry of Materials 2010, 22, (5), 1760-1767.
[19] Lee, J., Lee, D., Oh, E., Kim, J., Kim, Y. P., Jin, S., Kim, H. S., Hwang, Y., Kwak, J. H., Park, J. G., Shin, C. H., Kim, J. and Hyeon, T., Preparation of a magnetically switchable bioelectrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angewandte Chemie-International Edition 2005, 44, (45), 7427-7432.
[20] Lee, J., Jin, S. M., Hwang, Y., Park, J. G., Park, H. M. and Hyeon, T., Simple synthesis of mesoporous carbon with magnetic nanoparticles embedded in carbon rods. Carbon 2005, 43, (12), 2536-2543.
[21] Zhai, Y. P., Dou, Y. Q., Liu, X. X., Park, S. S., Ha, C. S. and Zhao, D. Y., Soft-template synthesis of ordered mesoporous carbon/nanoparticle nickel composites with a high surface area. Carbon 2011, 49, (2), 545-555.
[22] White, R. J., Budarin, V., Luque, R., Clark, J. H. and Macquarrie, D. J., Tuneable porous carbonaceous materials from renewable resources. Chemical Society Reviews 2009, 38, (12), 3401-3418.
[23] http://en.wikipedia.org/wiki/Allotropes_of_carbon.
[24] Linares-Solano, A., Lozano-Castello, D., Lillo-Rodenas, M. A. and Cazorla-Amoros, D., Carbon activation by alkaline hydroxides preparation and reactions, porosity and performance. Chemistry and Physics of Carbon, Vol 30 2008, 30, 1-62.
[25] Wan, Y., Shi, Y. F. and Zhao, D. Y., Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. Chemistry of Materials 2008, 20, (3), 932-945.
[26] Knox, J. H., Kaur, B. and Millward, G. R., Structure and performance of porous graphitic carbon in liquid-chromatography. Journal of Chromatography 1986, 352, 3-25.
[27] Goltner, C. G. and Weissenberger, M. C., Mesoporous organic polymers obtained by "Twostep nanocasting". Acta Polymerica 1998, 49, (12), 704-709.
[28] Ryoo, R., Joo, S. H. and Jun, S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B 1999, 103, (37), 7743-7746.
[29] Lee, J., Yoon, S., Hyeon, T., Oh, S. M. and Kim, K. B., Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chemical Communications 1999, (21), 2177-2178.
[30] Ryoo, R., Joo, S. H., Kruk, M. and Jaroniec, M., Ordered mesoporous carbons. Advanced Materials 2001, 13, (9), 677-681.
[31] Jun, S., Joo, S. H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T. and Terasaki, O., Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society 2000, 122, (43), 10712-10713.
[32] Kaneda, M., Tsubakiyama, T., Carlsson, A., Sakamoto, Y., Ohsuna, T., Terasaki, O., Joo, S. H. and Ryoo, R., Structural study of mesoporous mcm-48 and carbon networks synthesized in the spaces of mcm-48 by electron crystallography. Journal of Physical Chemistry B 2002, 106, (6), 1256-1266.
[33] Kim, S. S. and Pinnavaia, T. J., A low cost route to hexagonal mesostructured carbon molecular sieves. Chemical Communications 2001, (23), 2418-2419.
[34] Lee, J., Yoon, S., Oh, S. M., Shin, C. H. and Hyeon, T., Development of a new mesoporous carbon using an hms aluminosilicate template. Advanced Materials 2000, 12, (5), 359-362.
[35] Yang, H. F., Shi, Q. H., Liu, X. Y., Xie, S. H., Jiang, D. C., Zhang, F. Q., Yu, C. Z., Tu, B. and Zhao, D. Y., Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of ia3d symmetry. Chemical Communications 2002, (23), 2842-2843.
[36] Che, S. N., Garcia-Bennett, A. E., Liu, X. Y., Hodgkins, R. P., Wright, P. A., Zhao, D. Y., Terasaki, O. and Tatsumi, T., Synthesis of large-pore ia(3)over-bard mesoporous silica and its tubelike carbon replica. Angewandte Chemie-International Edition 2003, 42, (33), 3930-3934.
[37] Yang, C. M., Weidenthaler, C., Spliethoff, B., Mayanna, M. and Schuth, F., Template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chemistry of Materials 2005, 17, (2), 355-358.
[38] Liang, C. D., Hong, K. L., Guiochon, G. A., Mays, J. W. and Dai, S., Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angewandte Chemie-International Edition 2004, 43, (43), 5785-5789.
[39] Meng, Y., Gu, D., Zhang, F. Q., Shi, Y. F., Yang, H. F., Li, Z., Yu, C. Z., Tu, B. and Zhao, D. Y., Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angewandte Chemie-International Edition 2005, 44, (43), 7053-7059.
[40] Meng, Y., Gu, D., Zhang, F. Q., Shi, Y. F., Cheng, L., Feng, D., Wu, Z. X., Chen, Z. X., Wan, Y., Stein, A. and Zhao, D. Y., A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chemistry of Materials 2006, 18, (18), 4447-4464.
[41] Liang, C. D. and Dai, S., Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. Journal of the American Chemical Society 2006, 128, (16), 5316-5317.
[42] Wang, X. Q., Liang, C. D. and Dai, S., Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol-formaldehyde and block copolymers under highly acidic conditions. Langmuir 2008, 24, (14), 7500-7505.
[43] Wang, D. W., Li, F., Liu, M., Lu, G. Q. and Cheng, H. M., 3d aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angewandte Chemie-international Edition 2008, 47, (2), 373-376.
[44] Li, F. J., Morris, M. and Chan, K. Y., Electrochemical capacitance and ionic transport in the mesoporous shell of a hierarchical porous core-shell carbon structure. Journal Of Materials Chemistry 2011, 21, (24), 8880-8886.
[45] Moriguchi, I., Nakahara, F., Furukawa, H., Yamada, H. and Kudo, T., Colloidal crystal-templated porous carbon as a high performance electrical double-layer capacitor material. Electrochemical and Solid State Letters 2004, 7, (8), A221-A223.
[46] Yamada, H., Nakamura, H., Nakahara, F., Moriguchi, I. and Kudo, T., Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores. Journal of Physical Chemistry C 2007, 111, (1), 227-233.
[47] Chai, G. S., Yoon, S. B., Yu, J. S., Choi, J. H. and Sung, Y. E., Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. Journal of Physical Chemistry B 2004, 108, (22), 7074-7079.
[48] Yu, J. S., Kang, S., Yoon, S. B. and Chai, G., Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. Journal of the American Chemical Society 2002, 124, (32), 9382-9383.
[49] Tiemann, M., Repeated templating. Chemistry of Materials 2008, 20, (3), 961-971.
[50] Lin, H. P., Chang-Chien, C. Y., Tang, C. Y. and Lin, C. Y., Synthesis of p6mm hexagonal mesoporous carbons and silicas using pluronic f127-pf resin polymer blends. Microporous and Mesoporous Materials 2006, 93, (1-3), 344-348.
[51] Zhang, L. L. and Zhao, X. S., Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009, 38, (9), 2520-2531.
[52] Gogotsi, Y., Dash, R. K., Yushin, G., Yildirim, T., Laudisio, G. and Fischer, J. E., Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. Journal of the American Chemical Society 2005, 127, (46), 16006-16007.
[53] Kyotani, T., Nagai, T., Inoue, S. and Tomita, A., Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chemistry of Materials 1997, 9, (2), 609-615.
[54] Ma, Z. X., Kyotani, T., Liu, Z., Terasaki, O. and Tomita, A., Very high surface area microporous carbon with a three-dimensional nano-array structure: Synthesis and its molecular structure. Chemistry of Materials 2001, 13, (12), 4413-4415.
[55] Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O. and Ryoo, R., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles (vol 412, pg 169, 2001). Nature 2001, 414, (6862), 470-470.
[56] Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O. and Ryoo, R., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, (6843), 169-172.
[57] Stein, A., Sphere templating methods for periodic porous solids. Microporous and Mesoporous Materials 2001, 44, 227-239.
[58] Zakhidov, A. A., Baughman, R. H., Iqbal, Z., Cui, C. X., Khayrullin, I., Dantas, S. O., Marti, I. and Ralchenko, V. G., Carbon structures with three-dimensional periodicity at optical wavelengths. Science 1998, 282, (5390), 897-901.
[59] Yu, J. S., Lee, S. J. and Yoon, S. B., Template-directed synthesis of nanoporous carbons. Molecular Crystals and Liquid Crystals 2001, 371, 107-110.
[60] Kang, S., Yu, J. S., Kruk, M. and Jaroniec, M., Synthesis of an ordered macroporous carbon with 62 nm spherical pores that exhibit unique gas adsorption properties. Chemical Communications 2002, (16), 1670-1671.
[61] Jiang, P., Bertone, J. F., Hwang, K. S. and Colvin, V. L., Single-crystal colloidal multilayers of controlled thickness. Chemistry of Materials 1999, 11, (8), 2132-2140.
[62] Park, S. H., Qin, D. and Xia, Y. N., Crystallization of mesoscale particles over large areas. Advanced Materials 1998, 10, (13), 1028-1032.
[63] Zhu, J. X., Li, M., Rogers, R., Meyer, W., Ottewill, R. H., Russell, W. B. and Chaikin, P. M., Crystallization of hard-sphere colloids in microgravity. Nature 1997, 387, (6636), 883-885.
[64] Velev, O. D. and Lenhoff, A. M., Colloidal crystals as templates for porous materials. Current Opinion in Colloid & Interface Science 2000, 5, (1-2), 56-63.
[65] Su, F. B., Zhao, X. S., Wang, Y., Zeng, J. H., Zhou, Z. C. and Lee, J. Y., Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. Journal Of Physical Chemistry B 2005, 109, (43), 20200-20206.
[66] Zhou, Z. C., Yan, Q. F., Su, F. B. and Zhao, X. S., Replicating novel carbon nanostructures with 3d macroporous silica template. Journal of Materials Chemistry 2005, 15, (26), 2569-2574.
[67] Baumann, T. F. and Satcher, J. H., Homogeneous incorporation of metal nanoparticles into ordered macroporous carbons. Chemistry of Materials 2003, 15, (20), 3745-3747.
[68] Huang, C. H., Doong, R. A., Gu, D. and Zhao, D. Y., Dual-template synthesis of magnetically-separable hierarchically-ordered porous carbons by catalytic graphitization. Carbon 2011, 49, (9), 3055-3064.
[69] Lu, A. H., Li, W. C., Salabas, E. L., Spliethoff, B. and Schuth, F., Low temperature catalytic pyrolysis for the synthesis of high surface area, nanostructured graphitic carbon. Chemistry of Materials 2006, 18, (8), 2086-2094.
[70] Yoon, S. B., Chai, G. S., Kang, S. K., Yu, J. S., Gierszal, K. P. and Jaroniec, M., Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates. Journal of the American Chemical Society 2005, 127, (12), 4188-4189.
[71] Chai, G. S., Shin, I. S. and Yu, J. S., Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Advanced Materials 2004, 16, (22), 2057-2061.
[72] Kim, P., Joo, J. B., Kim, W., Kang, S. K., Song, I. K. and Yi, J., A novel method for the fabrication of ordered and three dimensionally interconnected macroporous carbon with mesoporosity. Carbon 2006, 44, (2), 389-392.
[73] Woo, S. W., Dokko, K., Nakano, H. and Kanamura, K., Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. Journal of Materials Chemistry 2008, 18, (14), 1674-1680.
[74] Woo, S. W., Dokko, K., Sasajima, K., Takei, T. and Kanamura, K., Three-dimensionally ordered macroporous carbons having walls composed of hollow mesosized spheres. Chemical Communications 2006, (39), 4099-4101.
[75] Tanaka, S., Nishiyama, N., Egashira, Y. and Ueyama, K., Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chemical Communications 2005, (16), 2125-2127.
[76] Huang, C. H. and Doong, R. A., Sugarcane bagasse as the scaffold for mass production of hierarchically porous carbon monoliths by surface self-assembly. Microporous and Mesoporous Materials 2012, 147, (1), 47-52.
[77] Wang, Z. Y., Li, F., Ergang, N. S. and Stein, A., Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites. Chemistry of Materials 2006, 18, (23), 5543-5553.
[78] Zhang, S. L., Chen, L., Zhou, S. X., Zhao, D. Y. and Wu, L. M., Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chemistry of Materials 2010, 22, (11), 3433-3440.
[79] Deng, Y. H., Liu, C., Yu, T., Liu, F., Zhang, F. Q., Wan, Y., Zhang, L. J., Wang, C. C., Tu, B., Webley, P. A., Wang, H. T. and Zhao, D. Y., Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chemistry of Materials 2007, 19, (13), 3271-3277.
[80] Liang, Y. R., Wu, D. C. and Fu, R. W., Preparation and electrochemical performance of novel ordered mesoporous carbon with an interconnected channel structure. Langmuir 2009, 25, (14), 7783-7785.
[81] Wang, Z. Y. and Stein, A., Morphology control of carbon, silica, and carbon/silica nanocomposites: From 3d ordered macro-/mesoporous monoliths to shaped mesoporous particles. Chemistry of Materials 2008, 20, (3), 1029-1040.
[82] Wang, Z. Y., Kiesel, E. R. and Stein, A., Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity. Journal of Materials Chemistry 2008, 18, (19), 2194-2200.
[83] Liu, H. J., Cui, W. J., Jin, L. H., Wang, C. X. and Xia, Y. Y., Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. Journal of Materials Chemistry 2009, 19, (22), 3661-3667.
[84] Zhou, D.-D., Liu, H.-J., Wang, Y.-G., Wang, C.-X. and Xia, Y.-Y., Ordered mesoporous/microporous carbon sphere arrays derived from chlorination of mesoporous tic/c composite and their application for supercapacitors. Journal of Materials Chemistry 2012, 22, (5), 1937-1943.
[85] Liu, H. J., Wang, X. M., Cui, W. J., Dou, Y. Q., Zhao, D. Y. and Xia, Y. Y., Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. Journal of Materials Chemistry 2010, 20, (20), 4223-4230.
[86] Zhou, H., Fan, T. X. and Zhang, D., Biotemplated materials for sustainable energy and environment: Current status and challenges. Chemsuschem 2011, 4, (10), 1344-1387.
[87] Jorgensen, M. R. and Bartl, M. H., Biotemplating routes to three-dimensional photonic crystals. Journal of Materials Chemistry 2011, 21, (29), 10583-10591.
[88] Li, Z., Zhang, L., Amirkhiz, B. S., Tan, X. H., Xu, Z. W., Wang, H. L., Olsen, B. C., Holt, C. M. B. and Mitlin, D., Carbonized chicken eggshell membranes with 3d architectures as high-performance electrode materials for supercapacitors. Advanced Energy Materials 2012, 2, (4), 431-437.
[89] Fang, Y., Gu, D., Zou, Y., Wu, Z. X., Li, F. Y., Che, R. C., Deng, Y. H., Tu, B. and Zhao, D. Y., A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angewandte Chemie-International Edition 2010, 49, (43), 7987-7991.
[90] Gu, D., Bongard, H., Deng, Y. H., Feng, D., Wu, Z. X., Fang, Y., Mao, J. J., Tu, B., Schuth, F. and Zhao, D. Y., An aqueous emulsion route to synthesize mesoporous carbon vesicles and their nanocomposites. Advanced Materials 2010, 22, (7), 833-+.
[91] Choma, J., Jamiola, D., Augustynek, K., Marszewski, M., Gao, M. and Jaroniec, M., New opportunities in stober synthesis: Preparation of microporous and mesoporous carbon spheres. Journal of Materials Chemistry 2012, 22, (25), 12636-12642.
[92] Liu, J., Qiao, S. Z., Liu, H., Chen, J., Orpe, A., Zhao, D. Y. and Lu, G. Q., Extension of the stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angewandte Chemie-International Edition 2011, 50, (26), 5947-5951.
[93] Zhang, X., Li, Y. and Cao, C., Facile one-pot synthesis of mesoporous hierarchically structured silica/carbon nanomaterials. Journal of Materials Chemistry 2012, 22, (28), 13918-13921.
[94] Matsuoka, K., Yamagishi, Y., Yamazaki, T., Setoyama, N., Tomita, A. and Kyotani, T., Extremely high microporosity and sharp pore size distribution of a large surface area carbon prepared in the nanochannels of zeolite y. Carbon 2005, 43, (4), 876-879.
[95] Michels, N. L., Mitchell, S., Milina, M., Kunze, K., Krumeich, F., Marone, F., Erdmann, M., Marti, N. and Perez-Ramirez, J., Hierarchically structured zeolite bodies: Assembling micro-, meso-, and macroporosity levels in complex materials with enhanced properties. Advanced Functional Materials 2012, 22, (12), 2509-2518.
[96] Su, D. S., Chen, X. W., Weinberg, G., Klein-Hofmann, A., Timpe, O., Hamid, S. B. A. and Schlogl, R., Hierarchically structured carbon: Synthesis of carbon nanofibers nested inside or immobilized onto modified activated carbon. Angewandte Chemie-International Edition 2005, 44, (34), 5488-5492.
[97] Su, D. S. and Thomas, A., Nanochemical concepts for a sustainable energy supply. Chemsuschem 2010, 3, (2), 120-121.
[98] Su, D. S., Chemistry of energy conversion and storage. Chemsuschem 2012, 5, (3), 443-445.
[99] Wakihara, M. and Yamamoto, O., Lithium ion batteries : Fundamentals and performance, Wiley-VCH, Tokyo : Kodansha ; Weinheim ; New York, 1998.
[100] Armand, M. and Tarascon, J. M., Building better batteries. Nature 2008, 451, (7179), 652-657.
[101] Scrosati, B. and Garche, J., Lithium batteries: Status, prospects and future. Journal of Power Sources 2010, 195, (9), 2419-2430.
[102] Liu, C., Li, F., Ma, L. P. and Cheng, H. M., Advanced materials for energy storage. Advanced Materials 2010, 22, (8), E28-E62.
[103] Kasavajjula, U., Wang, C. S. and Appleby, A. J., Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources 2007, 163, (2), 1003-1039.
[104] Wang, Y. G., Li, H. Q., He, P., Hosono, E. and Zhou, H. S., Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, (8), 1294-1305.
[105] Choi, N. S., Chen, Z. H., Freunberger, S. A., Ji, X. L., Sun, Y. K., Amine, K., Yushin, G., Nazar, L. F., Cho, J. and Bruce, P. G., Challenges facing lithium batteries and electrical double-layer capacitors. Angewandte Chemie-International Edition 2012, 51, (40), 9994-10024.
[106] Li, J. L., Daniel, C. and Wood, D., Materials processing for lithium-ion batteries. Journal of Power Sources 2011, 196, (5), 2452-2460.
[107] Daniel, C., Materials and processing for lithium-ion batteries. Jom 2008, 60, (9), 43-48.
[108] Kaskhedikar, N. A. and Maier, J., Lithium storage in carbon nanostructures. Advanced Materials 2009, 21, (25-26), 2664-2680.
[109] Hu, Y. S., Adelhelm, P., Smarsly, B. M., Hore, S., Antonietti, M. and Maier, J., Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Advanced Functional Materials 2007, 17, (12), 1873-1878.
[110] Yoon, S. H., Park, C. W., Yang, H. J., Korai, Y., Mochida, I., Baker, R. T. K. and Rodriguez, N. M., Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries. Carbon 2004, 42, (1), 21-32.
[111] Han, X. Y., Qing, G. Y., Sun, J. T. and Sun, T. L., How many lithium ions can be inserted onto fused c6 aromatic ring systems? Angewandte Chemie-International Edition 2012, 51, (21), 5147-5151.
[112] Zhou, H. S., Zhu, S. M., Hibino, M., Honma, I. and Ichihara, M., Lithium storage in ordered mesoporous carbon (cmk-3) with high reversible specific energy capacity and good cycling performance. Advanced Materials 2003, 15, (24), 2107-2111.
[113] Wang, T., Liu, X. Y., Zhao, D. Y. and Jiang, Z. Y., The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon. Chemical Physics Letters 2004, 389, (4-6), 327-331.
[114] Jache, B., Neumann, C., Becker, J., Smarsly, B. M. and Adelhelm, P., Towards commercial products by nanocasting: Characterization and lithium insertion properties of carbons with a macroporous, interconnected pore structure. Journal of Materials Chemistry 2012, 22, 10787-10794.
[115] Lee, K. T., Lytle, J. C., Ergang, N. S., Oh, S. M. and Stein, A., Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Advanced Functional Materials 2005, 15, (4), 547-556.
[116] Fang, B., Kim, M. S., Kim, J. H., Lim, S. and Yu, J. S., Ordered multimodal porous carbon with hierarchical nanostructure for high li storage capacity and good cycling performance. Journal of Materials Chemistry 2010, 20, (45), 10253-10259.
[117] Wang, Z., Fierke, M. A. and Stein, A., Porous carbon/tin (iv) oxide monoliths as anodes for lithium-ion batteries. Journal of the Electrochemical Society 2008, 155, (9), A658-A663.
[118] Grigoriants, I., Sominski, L., Li, H. L., Ifargan, I., Aurbach, D. and Gedanken, A., The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. Chemical Communications 2005, (7), 921-923.
[119] Han, F., Li, W.-C., Li, M.-R. and Lu, A.-H., Fabrication of superior-performance sno2@c composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. Journal of Materials Chemistry 2012, 22, (19), 9645-9651.
[120] Chang, P. Y., Huang, C. H. and Doong, R. A., Ordered mesoporous carbon-tio2 materials for improved electrochemical performance of lithium ion battery. Carbon 2012, 50, (11), 4259-4268.
[121] Zhu, G. N., Wang, Y. G. and Xia, Y. Y., Ti-based compounds as anode materials for li-ion batteries. Energy & Environmental Science 2012, 5, (5), 6652-6667.
[122] Cheng, M. Y. and Hwang, B. J., Mesoporous carbon-encapsulated nio nanocomposite negative electrode materials for high-rate li-ion battery. Journal of Power Sources 2010, 195, (15), 4977-4983.
[123] Ding, S. J., Wang, Z. Y., Madhavi, S. and Lou, X. W., Sba-15 derived carbon-supported sno2 nanowire arrays with improved lithium storage capabilities. Journal of Materials Chemistry 2011, 21, (36), 13860-13864.
[124] Kim, H. and Cho, J., Superior lithium electroactive mesoporous si@carbon core-shell nanowires for lithium battery anode material. Nano Letters 2008, 8, (11), 3688-3691.
[125] Zhang, H. J., Tao, H. H., Jiang, Y., Jiao, Z., Wu, M. H. and Zhao, B., Ordered coo/cmk-3 nanocomposites as the anode materials for lithium-ion batteries. Journal of Power Sources 2010, 195, (9), 2950-2955.
[126] Ji, X. L., Herle, S., Rho, Y. H. and Nazar, L. F., Carbon/moo2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers. Chemistry of Materials 2007, 19, (3), 374-383.
[127] Fan, J., Wang, T., Yu, C. Z., Tu, B., Jiang, Z. Y. and Zhao, D. Y., Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Advanced Materials 2004, 16, (16), 1432-1436.
[128] Esmanski, A. and Ozin, G. A., Silicon inverse-opal-based macroporous materials as negative electrodes for lithium ion batteries. Advanced Functional Materials 2009, 19, (12), 1999-2010.
[129] Wang, Z. Y., Li, F., Ergang, N. S. and Stein, A., Synthesis of monolithic 3d ordered macroporous carbon/nano-silicon composites by diiodosilane decomposition. Carbon 2008, 46, (13), 1702-1710.
[130] Ellis, B. L., Lee, K. T. and Nazar, L. F., Positive electrode materials for li-ion and li-batteries. Chemistry of Materials 2010, 22, (3), 691-714.
[131] Vu, A. and Stein, A., Multiconstituent synthesis of lifepo(4)/c composites with hierarchical porosity as cathode materials for lithium ion batteries. Chemistry of Materials 2011, 23, (13), 3237-3245.
[132] Hao, G. P., Han, F., Guo, D. C., Fan, R. J., Xiong, G., Li, W. C. and Lu, A. H., Monolithic carbons with tailored crystallinity and porous structure as lithium-ion anodes for fundamental understanding their rate performance and cycle stability. Journal of Physical Chemistry C 2012, 116, (18), 10303-10311.
[133] Chattopadhyay, S., Lipson, A. L., Karmel, H. J., Emery, J. D., Fister, T. T., Fenter, P. A., Hersam, M. C. and Bedzyk, M. J., In situ x-ray study of the solid electrolyte interphase (sei) formation on graphene as a model li-ion battery anode. Chemistry of Materials 2012, 24, (15), 3038-3043.
[134] Bozzini, B., Abyaneh, M. K., Amati, M., Gianoncelli, A., Gregoratti, L., Kaulich, B. and Kiskinova, M., Soft x-ray imaging and spectromicroscopy: New insights in chemical state and morphology of the key components in operating fuel-cells. Chemistry-a European Journal 2012, 18, (33), 10196-10210.
[135] Wu, Z. S., Xue, L. L., Ren, W. C., Li, F., Wen, L. and Cheng, H. M., A lif nanoparticle-modified graphene electrode for high-power and high-energy lithium ion batteries. Advanced Functional Materials 2012, DOI: 10.1002/adfm.201200534.
[136] Kraytsberg, A. and Ein-Eli, Y., Review on li-air batteries-opportunities, limitations and perspective. Journal of Power Sources 2011, 196, (3), 886-893.
[137] Ji, X. L. and Nazar, L. F., Advances in li-s batteries. Journal of Materials Chemistry 2010, 20, (44), 9821-9826.
[138] Ji, X. L., Lee, K. T. and Nazar, L. F., A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials 2009, 8, (6), 500-506.
[139] Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. and Wilcke, W., Lithium - air battery: Promise and challenges. Journal of Physical Chemistry Letters 2010, 1, (14), 2193-2203.
[140] Bruce, P. G., Hardwick, L. J. and Abraham, K. M., Lithium-air and lithium-sulfur batteries. Mrs Bulletin 2011, 36, (7), 506-512.
[141] Scrosati, B., Hassoun, J. and Sun, Y. K., Lithium-ion batteries. A look into the future. Energy & Environmental Science 2011, 4, (9), 3287-3295.
[142] Bruce, P. G., Freunberger, S. A., Hardwick, L. J. and Tarascon, J. M., Li-o-2 and li-s batteries with high energy storage. Nature Materials 2012, 11, (1), 19-29.
[143] Wang, D.-W., Zhou, G., Li, F., Wu, K.-H., Lu, G. Q., Cheng, H.-M. and Gentle, I. R., A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based li-s batteries. Physical Chemistry Chemical Physics 2012, 14, (24), 8703-8710.
[144] Wang, H. L., Yang, Y., Liang, Y. Y., Robinson, J. T., Li, Y. G., Jackson, A., Cui, Y. and Dai, H. J., Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Letters 2011, 11, (7), 2644-2647.
[145] Zheng, W., Liu, Y. W., Hu, X. G. and Zhang, C. F., Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochimica Acta 2006, 51, (7), 1330-1335.
[146] Yang, Y., McDowell, M. T., Jackson, A., Cha, J. J., Hong, S. S. and Cui, Y., New nanostructured li(2)s/silicon rechargeable battery with high specific energy. Nano Letters 2010, 10, (4), 1486-1491.
[147] Nelson, J., Misra, S., Yang, Y., Jackson, A., Liu, Y. J., Wang, H. L., Dai, H. J., Andrews, J. C., Cui, Y. and Toney, M. F., In operando x-ray diffraction and transmission x-ray microscopy of lithium sulfur batteries. Journal of the American Chemical Society 2012, 134, (14), 6337-6343.
[148] Zhang, B., Qin, X., Li, G. R. and Gao, X. P., Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science 2010, 3, (10), 1531-1537.
[149] Tachikawa, N., Yamauchi, K., Takashima, E., Park, J. W., Dokko, K. and Watanabe, M., Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-li salt molten complex electrolytes. Chemical Communications 2011, 47, (28), 8157-8159.
[150] Hassoun, J. and Scrosati, B., A high-performance polymer tin sulfur lithium ion battery. Angewandte Chemie-International Edition 2010, 49, (13), 2371-2374.
[151] Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A. and Archer, L. A., Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angewandte Chemie-International Edition 2011, 50, (26), 5904-5908.
[152] Schuster, J., He, G., Mandlmeier, B., Yim, T., Lee, K. T., Bein, T. and Nazar, L. F., Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angewandte Chemie-International Edition 2012, 51, (15), 3591-3595.
[153] Wang, J. L., Yang, J., Xie, J. Y., Xu, N. X. and Li, Y., Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochemistry Communications 2002, 4, (6), 499-502.
[154] Guo, J. C., Xu, Y. H. and Wang, C. S., Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Letters 2011, 11, (10), 4288-4294.
[155] Chen, S. R., Zhai, Y. P., Xu, G. L., Jiang, Y. X., Zhao, D. Y., Li, J. T., Huang, L. and Suna, S. G., Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochimica Acta 2011, 56, (26), 9549-9555.
[156] Zhang, B., Lai, C., Zhou, Z. and Gao, X. P., Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials. Electrochimica Acta 2009, 54, (14), 3708-3713.
[157] Lai, C., Gao, X. P., Zhang, B., Yan, T. Y. and Zhou, Z., Synthesis and electrochemical performance of sulfur/highly porous carbon composites. Journal of Physical Chemistry C 2009, 113, (11), 4712-4716.
[158] Zheng, G. Y., Yang, Y., Cha, J. J., Hong, S. S. and Cui, Y., Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Letters 2011, 11, (10), 4462-4467.
[159] Liang, X. A., Wen, Z. Y., Liu, Y., Zhang, H., Huang, L. Z. and Jin, J., Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer li/s battery. Journal of Power Sources 2011, 196, (7), 3655-3658.
[160] Li, X. L., Cao, Y. L., Qi, W., Saraf, L. V., Xiao, J., Nie, Z. M., Mietek, J., Zhang, J. G., Schwenzer, B. and Liu, J., Optimization of mesoporous carbon structures for lithium-sulfur battery applications. Journal of Materials Chemistry 2011, 21, (41), 16603-16610.
[161] He, G., Ji, X. L. and Nazar, L., High "C" Rate li-s cathodes: Sulfur imbibed bimodal porous carbons. Energy & Environmental Science 2011, 4, (8), 2878-2883.
[162] Wei, S. C., Zhang, H., Huang, Y. Q., Wang, W. K., Xia, Y. Z. and Yu, Z. B., Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries. Energy & Environmental Science 2011, 4, (3), 736-740.
[163] Liang, C. D., Dudney, N. J. and Howe, J. Y., Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chemistry of Materials 2009, 21, (19), 4724-4730.
[164] Ji, L. W., Rao, M. M., Zheng, H. M., Zhang, L., Li, Y. C., Duan, W. H., Guo, J. H., Cairns, E. J. and Zhang, Y. G., Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society 2011, 133, (46), 18522-18525.
[165] Wang, J., Chew, S. Y., Zhao, Z. W., Ashraf, S., Wexler, D., Chen, J., Ng, S. H., Chou, S. L. and Liu, H. K., Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 2008, 46, (2), 229-235.
[166] Ji, L. W., Rao, M. M., Aloni, S., Wang, L., Cairns, E. J. and Zhang, Y. G., Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy & Environmental Science 2011, 4, (12), 5053-5059.
[167] Ji, X. L., Evers, S., Black, R. and Nazar, L. F., Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nature Communications 2011, 2, Artn 325.
[168] Hassoun, J. and Scrosati, B., Moving to a solid-state configuration: A valid approach to making lithium-sulfur batteries viable for practical applications. Advanced Materials 2010, 22, (45), 5198-5201.
[169] Gao, J., Lowe, M. A., Kiya, Y. and Abruna, H. D., Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: Electrochemical and in-situ x-ray absorption spectroscopic studies. Journal of Physical Chemistry C 2011, 115, (50), 25132-25137.
[170] Barchasz, C., Lepretre, J. C., Alloin, F. and Patoux, S., New insights into the limiting parameters of the li/s rechargeable cell. Journal of Power Sources 2012, 199, 322-330.
[171] Barchasz, C., Mesguich, F., Dijon, J., Lepretre, J. C., Patoux, S. and Alloin, F., Novel positive electrode architecture for rechargeable lithium/sulfur batteries. Journal of Power Sources 2012, 211, 19-26.
[172] Largeot, C., Portet, C., Chmiola, J., Taberna, P. L., Gogotsi, Y. and Simon, P., Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society 2008, 130, (9), 2730-2731.
[173] Simon, P. and Gogotsi, Y., Materials for electrochemical capacitors. Nature Materials 2008, 7, (11), 845-854.
[174] Frackowiak, E. and Beguin, F., Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, (6), 937-950.
[175] Liu, J., Cao, G. Z., Yang, Z. G., Wang, D. H., Dubois, D., Zhou, X. D., Graff, G. L., Pederson, L. R. and Zhang, J. G., Oriented nanostructures for energy conversion and storage. ChemSusChem 2008, 1, (8-9), 676-697.
[176] Fic, K., Lota, G., Meller, M. and Frackowiak, E., Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy & Environmental Science 2012, 5, (2), 5842-5850.
[177] Pandolfo, A. G. and Hollenkamp, A. F., Carbon properties and their role in supercapacitors. Journal of Power Sources 2006, 157, (1), 11-27.
[178] Wang, G., Zhang, L. and Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 2011, 41, (2), 797-828.
[179] Wu, N. L. and Wang, S. Y., Conductivity percolation in carbon-carbon supercapacitor electrodes. Journal of Power Sources 2002, 110, (1), 233-236.
[180] Wei, Y. Z., Fang, B., Iwasa, S. and Kumagai, M., A novel electrode material for electric double-layer capacitors. Journal of Power Sources 2005, 141, (2), 386-391.
[181] Huang, J. S., Sumpter, B. G. and Meunier, V., A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry-a European Journal 2008, 14, (22), 6614-6626.
[182] Huang, J. S., Sumpter, B. G. and Meunier, V., Theoretical model for nanoporous carbon supercapacitors. Angewandte Chemie-International Edition 2008, 47, (3), 520-524.
[183] Lin, C., Ritter, J. A. and Popov, B. N., Correlation of double-layer capacitance with the pore structure of sol-gel derived carbon xerogels. Journal of the Electrochemical Society 1999, 146, (10), 3639-3643.
[184] Huang, C. H., Zhang, Q., Chou, T. C., Chen, C. M., Su, D. S. and Doong, R. A., Three-dimensional hierarchically-ordered porous carbons with partially graphitic nanostructure for electrochemical capacitive energy storage. Chemsuschem 2012, 5, (3), 563-571.
[185] Lv, Y., Zhang, F., Dou, Y., Zhai, Y., Wang, J., Liu, H., Xia, Y., Tu, B. and Zhao, D., A comprehensive study on koh activation of ordered mesoporous carbons and their supercapacitor application. Journal of Materials Chemistry 2012, 22, (1), 93-99.
[186] Fan, Z. J., Yan, J., Zhi, L. J., Zhang, Q., Wei, T., Feng, J., Zhang, M. L., Qian, W. Z. and Wei, F., A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Advanced Materials 2010, 22, (33), 3723-3728.
[187] Li, W., Zhang, F., Dou, Y. Q., Wu, Z. X., Liu, H. J., Qian, X. F., Gu, D., Xia, Y. Y., Tu, B. and Zhao, D. Y., A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Advanced Energy Materials 2011, 1, (3), 382-386.
[188] Raymundo-Piñero, E., Cadek, M., Wachtler, M. and Béguin, F., Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons. ChemSusChem 2011, 4, 943-949.
[189] Yan, J., Wei, T., Shao, B., Fan, Z. J., Qian, W. Z., Zhang, M. L. and Wei, F., Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 2010, 48, (2), 487-493.
[190] Zhao, L., Fan, L. Z., Zhou, M. Q., Guan, H., Qiao, S. Y., Antonietti, M. and Titirici, M. M., Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Advanced Materials 2010, 22, (45), 5202-5206.
[191] Zhao, X. C., Wang, A. Q., Yan, J. W., Sun, G. Q., Sun, L. X. and Zhang, T., Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons. Chemistry of Materials 2010, 22, (19), 5463-5473.
[192] Wang, J. X., Xue, C. F., Lv, Y. Y., Zhang, F., Tu, B. and Zhao, D. Y., Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance. Carbon 2011, 49, (13), 4580-4588.
[193] Chen, C. M., Zhang, Q., Yang, M. G., Huang, C. H., Yang, Y. G. and Wang, M. Z., Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors. Carbon 2012, 50, (10), 3572-3584.
[194] Chen, C. M., Zhang, Q., Huang, C. H., Zhao, X. C., Zhang, B. S., Kong, Q. Q., Wang, M. Z., Yang, Y. G., Cai, R. and Su, D. S., Macroporous 'bubble' graphene film via template-directed ordered-assembly for high rate supercapacitors. Chemical Communications 2012, 48, (57), 7149-7151.
[195] Xu, G. H., Zheng, C., Zhang, Q., Huang, J. Q., Zhao, M. Q., Nie, J. Q., Wang, X. H. and Wei, F., Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Research 2011, 4, (9), 870-881.
[196] Chen, Z., Wen, J., Yan, C., Rice, L., Sohn, H., Shen, M., Cai, M., Dunn, B. and Lu, Y., High-performance supercapacitors based on hierarchically porous graphite particles Advanced Energy Materials 2011, 1, (4), 551-556.
[197] Frackowiak, E., Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics 2007, 9, (15), 1774-1785.
[198] Yoon, S., Lee, J. W., Hyeon, T. and Oh, S. M., Electric double-layer capacitor performance of a new mesoporous carbon. Journal of the Electrochemical Society 2000, 147, (7), 2507-2512.
[199] Xing, W., Qiao, S. Z., Ding, R. G., Li, F., Lu, G. Q., Yan, Z. F. and Cheng, H. M., Superior electric double layer capacitors using ordered mesoporous carbons. Carbon 2006, 44, (2), 216-224.
[200] Wang, D. W., Li, F., Fang, H. T., Liu, M., Lu, G. Q. and Cheng, H. M., Effect of pore packing defects in 2-d ordered mesoporous carbons on ionic transport. Journal of Physical Chemistry B 2006, 110, (17), 8570-8575.
[201] Nishihara, H., Itoi, H., Kogure, T., Hou, P. X., Touhara, H., Okino, F. and Kyotani, T., Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials. Chemistry-a European Journal 2009, 15, (21), 5355-5363.
[202] Li, H. F., Wang, R. D. and Cao, R., Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor. Microporous and Mesoporous Materials 2008, 111, (1-3), 32-38.
[203] Dong, X. P., Shen, W. H., Gu, J. L., Xiong, L. M., Zhu, Y. F., Li, Z. and Shi, J. L., Mno2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. Journal of Physical Chemistry B 2006, 110, (12), 6015-6019.
[204] Patel, M. N., Wang, X. Q., Slanac, D. A., Ferrer, D. A., Dai, S., Johnston, K. P. and Stevenson, K. J., High pseudocapacitance of mno2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates. Journal of Materials Chemistry 2012, 22, (7), 3160-3169.
[205] Dou, Y. Q., Zhai, Y. P., Liu, H. J., Xia, Y. Y., Tu, B., Zhao, D. Y. and Liu, X. X., Syntheses of polyaniline/ordered mesoporous carbon composites with interpenetrating framework and their electrochemical capacitive performance in alkaline solution. Journal of Power Sources 2011, 196, (3), 1608-1614.
[206] Fan, L. Z., Hu, Y. S., Maier, J., Adelhelm, P., Smarsly, B. and Antonietti, M., High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Advanced Functional Materials 2007, 17, (16), 3083-3087.
[207] Zhao, X. C., Zhang, Q., Zhang, B. S., Chen, C. M., Wang, A. Q., Zhang, T. and Su, D. S., Dual-heteroatom-modified ordered mesoporous carbon: Hydrothermal functionalization, structure, and its electrochemical performance. Journal of Materials Chemistry 2012, 22, (11), 4963-4969.
[208] Kim, W., Joo, J. B., Kim, N., Oh, S., Kim, P. and Yi, J., Preparation of nitrogen-doped mesoporous carbon nanopipes for the electrochemical double layer capacitor. Carbon 2009, 47, (5), 1407-1411.
[209] Zhao, X. C., Zhang, Q., Chen, C. M., Zhang, B. S., Reiche, S., Wang, A. Q., Zhang, T., Schlögl, R. and Su, D. S., Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy 2012, 1, (4), 624-630.
[210] Chen, C. M., Zhang, Q., Zhao, X. C., Zhang, B. S., Kong, Q. Q., Yang, M. G., Yang, Q. H., Wang, M. Z., Yang, Y. G., Schlogl, R. and Su, D. S., Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. Journal of Materials Chemistry 2012, 22, (28), 14076-14084.
[211] Korenblit, Y., Kajdos, A., West, W. C., Smart, M. C., Brandon, E. J., Kvit, A., Jagiello, J. and Yushin, G., In situ studies of ion transport in microporous supercapacitor electrodes at ultralow temperatures. Advanced Functional Materials 2012, 22, (8), 1655-1662.
[212] Ghosh, A. and Lee, Y. H., Carbon-based electrochemical capacitors. Chemsuschem 2012, 5, (3), 480-499.
[213] Yang, K. L., Ying, T. Y., Yiacoumi, S., Tsouris, C. and Vittoratos, E. S., Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model. Langmuir 2001, 17, (6), 1961-1969.
[214] Fang, B. Z., Kim, J. H., Kim, M. and Yu, J. S., Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell. Chemistry of Materials 2009, 21, (5), 789-796.
[215] Chen, Z. W., Higgins, D., Yu, A. P., Zhang, L. and Zhang, J. J., A review on non-precious metal electrocatalysts for pem fuel cells. Energy & Environmental Science 2011, 4, (9), 3167-3192.
[216] Su, D. S. and Sun, G. Q., Nonprecious-metal catalysts for low-cost fuel cells. Angewandte Chemie-International Edition 2011, 50, (49), 11570-11572.
[217] Wu, Z. X., Lv, Y. Y., Xia, Y. Y., Webley, P. A. and Zhao, D. Y., Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. Journal of the American Chemical Society 2012, 134, (4), 2236-2245.
[218] Balgis, R., Anilkumar, G. M., Sago, S., Ogi, T. and Okuyama, K., Nanostructured design of electrocatalyst support materials for high-performance pem fuel cell application. Journal of Power Sources 2012, 203, 26-33.
[219] Gasteiger, H. A., Kocha, S. S., Sompalli, B. and Wagner, F. T., Activity benchmarks and requirements for pt, pt-alloy, and non-pt oxygen reduction catalysts for pemfcs. Applied Catalysis B-Environmental 2005, 56, (1-2), 9-35.
[220] Chan, K. Y., Ding, J., Ren, J. W., Cheng, S. A. and Tsang, K. Y., Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. Journal of Materials Chemistry 2004, 14, (4), 505-516.
[221] Lin, M. L., Huang, C. C., Lo, M. Y. and Mou, C. Y., Well-ordered mesoporous carbon thin film with perpendicular channels: Application to direct methanol fuel cell. Journal of Physical Chemistry C 2008, 112, (3), 867-873.
[222] Rolison, D. R., Catalytic nanoarchitectures - the importance of nothing and the unimportance of periodicity. Science 2003, 299, (5613), 1698-1701.
[223] Liu, H. S., Song, C. J., Zhang, L., Zhang, J. J., Wang, H. J. and Wilkinson, D. P., A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources 2006, 155, (2), 95-110.
[224] Wildgoose, G. G., Banks, C. E. and Compton, R. G., Metal nanopartictes and related materials supported on carbon nanotubes: Methods and applications. Small 2006, 2, (2), 182-193.
[225] Shao, Y. Y., Yin, G. P. and Gao, Y. Z., Understanding and approaches for the durability issues of pt-based catalysts for pem fuel cell. Journal of Power Sources 2007, 171, (2), 558-566.
[226] Bianchini, C. and Shen, P. K., Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chemical Reviews 2009, 109, (9), 4183-4206.
[227] Shao, Y. Y., Sui, J. H., Yin, G. P. and Gao, Y. Z., Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Applied Catalysis B-Environmental 2008, 79, (1-2), 89-99.
[228] Zhou, Y. K., Neyerlin, K., Olson, T. S., Pylypenko, S., Bult, J., Dinh, H. N., Gennett, T., Shao, Z. P. and O'Hayre, R., Enhancement of pt and pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy & Environmental Science 2010, 3, (10), 1437-1446.
[229] Sharma, S. and Pollet, B. G., Support materials for pemfc and dmfc electrocatalysts-a review. Journal of Power Sources 2012, 208, 96-119.
[230] Menzel, N., Ortel, E., Kraehnert, R. and Strasser, P., Electrocatalysis using porous nanostructured materials. Chemphyschem 2012, 13, (6), 1385-1394.
[231] Lin, M. L., Lo, M. Y. and Mou, C. Y., Ptrup nanoparticles supported on mesoporous carbon thin film as highly active anode materials for direct methanol fuel cell. Catalysis Today 2011, 160, (1), 109-115.
[232] Liu, S. H., Lu, R. F., Huang, S. J., Lo, A. Y., Chien, S. H. and Liu, S. B., Controlled synthesis of highly dispersed platinum nanoparticles in ordered mesoporous carbon. Chemical Communications 2006, (32), 3435-3437.
[233] Chen, A. C. and Holt-Hindle, P., Platinum-based nanostructured materials: Synthesis, properties, and applications. Chemical Reviews 2010, 110, (6), 3767-3804.
[234] Spendelow, J. S. and Wieckowski, A., Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Physical Chemistry Chemical Physics 2007, 9, (21), 2654-2675.
[235] Cheng, F. Y. and Chen, J., Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews 2012, 41, (6), 2172-2192.
[236] Xiang, D. and Yin, L. W., Well-dispersed and size-tuned bimetallic ptfex nanoparticle catalysts supported on ordered mesoporous carbon for enhanced electrocatalytic activity in direct methanol fuel cells. Journal of Materials Chemistry 2012, 22, (19), 9584-9593.
[237] Zhang, L., Zhang, J. J., Wilkinson, D. P. and Wang, H. J., Progress in preparation of non-noble electrocatalysts for pem fuel cell reactions. Journal of Power Sources 2006, 156, (2), 171-182.
[238] Gong, K. P., Du, F., Xia, Z. H., Durstock, M. and Dai, L. M., Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, (5915), 760-764.
[239] Yang, L. J., Jiang, S. J., Zhao, Y., Zhu, L., Chen, S., Wang, X. Z., Wu, Q., Ma, J., Ma, Y. W. and Hu, Z., Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angewandte Chemie-International Edition 2011, 50, (31), 7132-7135.
[240] Bezerra, C. W. B., Zhang, L., Lee, K. C., Liu, H. S., Marques, A. L. B., Marques, E. P., Wang, H. J. and Zhang, J. J., A review of fe-n/c and co-n/c catalysts for the oxygen reduction reaction. Electrochimica Acta 2008, 53, (15), 4937-4951.
[241] Ding, J., Chan, K. Y., Ren, J. W. and Xiao, F. S., Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions. Electrochimica Acta 2005, 50, (15), 3131-3141.
[242] Flexer, V., Brun, N., Backov, R. and Mano, N., Designing highly efficient enzyme-based carbonaceous foams electrodes for biofuel cells. Energy & Environmental Science 2010, 3, (9), 1302-1306.
[243] Fang, B., Kim, J. H., Kim, M., Kim, M. and Yu, J.-S., Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell. Physical Chemistry Chemical Physics 2009, 11, (9), 1380-1387.
[244] Yang, Y. X., Chiang, K. and Burke, N., Porous carbon-supported catalysts for energy and environmental applications: A short review. Catalysis Today 2011, 178, (1), 197-205.
[245] Maiyalagan, T., Alaje, T. O. and Scott, K., Highly stable pt-ru nanoparticles supported on three-dimensional cubic ordered mesoporous carbon (pt-ru/cmk-8) as promising electrocatalysts for methanol oxidation. Journal of Physical Chemistry C 2012, 116, (3), 2630-2638.
[246] He, C., Liang, Y., Fu, R., Wu, D., Song, S. and Cai, R., Nanopores array of ordered mesoporous carbons determine pt's activity towards alcohol electrooxidation. Journal of Materials Chemistry 2011, 21, (41), 16357-16364.
[247] Gupta, G., Slanac, D. A., Kumar, P., Wiggins-Camacho, J. D., Kim, J., Ryoo, R., Stevenson, K. J. and Johnston, K. P., Highly stable pt/ordered graphitic mesoporous carbon electrocatalysts for oxygen reduction. Journal of Physical Chemistry C 2010, 114, (24), 10796-10805.
[248] Sun, S. H., Zhang, G. X., Geng, D. S., Chen, Y. G., Li, R. Y., Cai, M. and Sun, X. L., A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: Multiarmed starlike nanowire single crystal. Angewandte Chemie-International Edition 2011, 50, (2), 422-426.
[249] Meier, J. C., Katsounaros, I., Galeano, C., Bongard, H., Topalov, A. A., Kostka, A., Karschin, A., Schuth, F. and Mayrhofer, K. J. J., Stability investigations of electrocatalysts on the nanoscale. Energy & Environmental Science 2012, 5, 9319-9330.
[250] Yu, X. W. and Ye, S. Y., Recent advances in activity and durability enhancement of pt/c catalytic cathode in pemfc - part ii: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. Journal of Power Sources 2007, 172, (1), 145-154.
[251] Yu, X. W. and Ye, S. Y., Recent advances in activity and durability enhancement of pt/c catalytic cathode in pemfc - part i. Physico-chemical and electronic interaction between pt and carbon support, and activity enhancement of pt/c catalyst. Journal of Power Sources 2007, 172, (1), 133-144.
[252] Saida, T., Sekizawa, O., Ishiguro, N., Hoshino, M., Uesugi, K., Uruga, T., Ohkoshi, S., Yokoyama, T. and Tada, M., 4d visualization of a cathode catalyst layer in a pemfc by 3d laminography-xafs. Angewandte Chemie-International Edition 2012, 51, (41), 10311-10314.
[253] Deabate, S., Gebel, G., Huguet, P., Morin, A. and Pourcelly, G., 3 in situ and operando determination of the water content distribution in proton conducting membranes for fuel cells: A critical review. Energy & Environmental Science 2012, 5, 8824-8847.
[254] Gadhamshettya, V. and Koratkarb, N., Nano-engineered biocatalyst-electrode structures for next generation microbial fuel cells. Nano Energy 2012, 1, (1), 3-5.
[255] Logan, B. E., Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology 2009, 7, (5), 375-381.
[256] Qiao, Y., Bao, S. J. and Li, C. M., Electrocatalysis in microbial fuel cells-from electrode material to direct electrochemistry. Energy & Environmental Science 2010, 3, (5), 544-553.
[257] Oregan, B. and Gratzel, M., A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal tio2 films. Nature 1991, 353, (6346), 737-740.
[258] Hagfeldt, A., Boschloo, G., Sun, L. C., Kloo, L. and Pettersson, H., Dye-sensitized solar cells. Chemical Reviews 2010, 110, (11), 6595-6663.
[259] Luo, Y. H., Li, D. M. and Meng, Q. B., Towards optimization of materials for dye-sensitized solar cells. Advanced Materials 2009, 21, (45), 4647-4651.
[260] Gratzel, M., Recent advances in sensitized mesoscopic solar cells. Accounts of Chemical Research 2009, 42, (11), 1788-1798.
[261] Snaith, H. J., Estimating the maximum attainable efficiency in dye-sensitized solar cells. Advanced Functional Materials 2010, 20, (1), 13-19.
[262] Sealy, C., New dye-sensitizedsolarcellbreaksefficiencyrecord. Nano Energy 2012, 1, 1-2.
[263] Brennan, L. J., Byrne, M. T., Bari, M. and Gun'ko, Y. K., Carbon nanomaterials for dye-sensitized solar cell applications: A bright future. Advanced Energy Materials 2011, 1, (4), 472-485.
[264] Gratzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 2003, 4, (2), 145-153.
[265] Kay, A. and Gratzel, M., Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells 1996, 44, (1), 99-117.
[266] Imoto, K., Takahashi, K., Yamaguchi, T., Komura, T., Nakamura, J. and Murata, K., High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2003, 79, (4), 459-469.
[267] Murakami, T. N., Ito, S., Wang, Q., Nazeeruddin, M. K., Bessho, T., Cesar, I., Liska, P., Humphry-Baker, R., Comte, P., Pechy, P. and Gratzel, M., Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. Journal of the Electrochemical Society 2006, 153, (12), A2255-A2261.
[268] Wu, M. X., Lin, X., Wang, T. H., Qiu, J. S. and Ma, T. L., Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energy & Environmental Science 2011, 4, (6), 2308-2315.
[269] Fan, S. Q., Fang, B., Kim, J. H., Jeong, B., Kim, C., Yu, J. S. and Ko, J., Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells. Langmuir 2010, 26, (16), 13644-13649.
[270] Fang, B. Z., Fan, S. Q., Kim, J. H., Kim, M. S., Kim, M., Chaudhari, N. K., Ko, J. and Yu, J. S., Incorporating hierarchical nanostructured carbon counter electrode into metal-free organic dye-sensitized solar cell. Langmuir 2010, 26, (13), 11238-11243.
[271] Wang, G. Q., Xing, W. and Zhuo, S. P., Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. Journal of Power Sources 2009, 194, (1), 568-573.
[272] Ramasamy, E. and Lee, J., Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. Chemical Communications 2010, 46, (12), 2136-2138.
[273] Ramasamy, E., Jo, C., Anthonysamy, A., Jeong, I., Kim, J. K. and Lee, J., Soft-template simple synthesis of ordered mesoporous titanium nitride-carbon nanocomposite for high performance dye-sensitized solar cell counter electrodes. Chemistry of Materials 2012, 24, (9), 1575-1582.
[274] Kang, D. Y., Lee, Y., Cho, C. Y. and Moon, J. H., Inverse opal carbons for counter electrode of dye-sensitized solar cells. Langmuir 2012, 28, (17), 7033-7038.
[275] Jo, Y., Cheon, J. Y., Yu, J., Jeong, H. Y., Han, C. H., Jun, Y. and Joo, S. H., Highly interconnected ordered mesoporous carbon-carbon nanotube nanocomposites: Pt-free, highly efficient, and durable counter electrodes for dye-sensitized solar cells. Chemical Communications 2012, 48, (65), 8057-8059.
[276] Ramasamy, E., Chun, J. and Lee, J., Soft-template synthesized ordered mesoporous carbon counter electrodes for dye-sensitized solar cells. Carbon 2010, 48, (15), 4563-4565.
[277] Trancik, J. E., Barton, S. C. and Hone, J., Transparent and catalytic carbon nanotube films. Nano Letters 2008, 8, (4), 982-987.
[278] Li, G. R., Wang, F., Jiang, Q. W., Gao, X. P. and Shen, P. W., Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angewandte Chemie-International Edition 2010, 49, (21), 3653-3656.
[279] Ramasamy, E., Lee, W. J., Lee, D. Y. and Song, J. S., Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (i-3(-)) reduction in dye-sensitized solar cells. Electrochemistry Communications 2008, 10, (7), 1087-1089.
[280] Roy-Mayhew, J. D., Bozym, D. J., Punckt, C. and Aksay, I. A., Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. Acs Nano 2010, 4, (10), 6203-6211.
[281] Wen, Z. H., Cui, S. M., Pu, H. H., Mao, S., Yu, K. H., Feng, X. L. and Chen, J. H., Metal nitride/graphene nanohybrids: General synthesis and multifunctional titanium nitride/graphene electrocatalyst. Advanced Materials 2011, 23, (45), 5445-5450.
[282] Kavan, L., Yum, J. H. and Gratzel, M., Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. Acs Nano 2011, 5, (1), 165-172.
[283] Murakami, T. N. and Gratzel, M., Counter electrodes for dsc: Application of functional materials as catalysts. Inorganica Chimica Acta 2008, 361, (3), 572-580.
[284] Li, T. C., Spokoyny, A. M., She, C. X., Farha, O. K., Mirkin, C. A., Marks, T. J. and Hupp, J. T., Ni(iii)/(iv) bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells. Journal of the American Chemical Society 2010, 132, (13), 4580-4582.
[285] Wang, L., Diau, E. W. G., Wu, M. X., Lu, H. P. and Ma, T. L., Highly efficient catalysts for co(ii/iii) redox couples in dye-sensitized solar cells. Chemical Communications 2012, 48, (20), 2600-2602.
[286] Wu, M. X., Lin, X., Wang, Y. D., Wang, L., Guo, W., Qu, D. D., Peng, X. J., Hagfeldt, A., Gratzel, M. and Ma, T. L., Economical pt-free catalysts for counter electrodes of dye-sensitized solar cells. Journal of the American Chemical Society 2012, 134, (7), 3419-3428.
[287] Daeneke, T., Kwon, T. H., Holmes, A. B., Duffy, N. W., Bach, U. and Spiccia, L., High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nature Chemistry 2011, 3, (3), 211-215.
[288] Yella, A., Lee, H. W., Tsao, H. N., Yi, C. Y., Chandiran, A. K., Nazeeruddin, M. K., Diau, E. W. G., Yeh, C. Y., Zakeeruddin, S. M. and Gratzel, M., Porphyrin-sensitized solar cells with cobalt (ii/iii)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, (6056), 629-634.
[289] Wang, M. K., Chamberland, N., Breau, L., Moser, J. E., Humphry-Baker, R., Marsan, B., Zakeeruddin, S. M. and Gratzel, M., An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chemistry 2010, 2, (5), 385-389.
[290] Li, D. M., Li, H., Luo, Y. H., Li, K. X., Meng, Q. B., Armand, M. and Chen, L. Q., Non-corrosive, non-absorbing organic redox couple for dye-sensitized solar cells. Advanced Functional Materials 2010, 20, (19), 3358-3365.
[291] Dong, J., Jia, S., Chen, J., Li, B., Zheng, J., Zhao, J., Wang, Z. and Zhu, Z., Nitrogen-doped hollow carbon nanoparticles as efficient counter electrodes in quantum dot sensitized solar cells. Journal of Materials Chemistry 2012, 22, (19), 9745-9750.
[292] Peng, S. J., Tian, L. L., Liang, J., Mhaisalkar, S. G. and Ramakrishna, S., Polypyrrole nanorod networks/carbon nanoparticles composite counter electrodes for high-efficiency dye-sensitized solar cells. Acs Applied Materials & Interfaces 2012, 4, (1), 397-404.
[293] Lee, B., Buchholz, D. B. and Chang, R. P. H., An all carbon counter electrode for dye sensitized solar cells. Energy & Environmental Science 2012, 5, (5), 6941-6952.
[294] Wang, Y. D., Wu, M. X., Lin, X., Shi, Z. C., Hagfeldt, A. and Ma, T. L., Several highly efficient catalysts for pt-free and fto-free counter electrodes of dye-sensitized solar cells. Journal of Materials Chemistry 2012, 22, (9), 4009-4014.
[295] Wu, M. X., Lin, X., Wang, L., Guo, W., Wang, Y. D., Xiao, J. Q., Hagfeldt, A. and Ma, T. L., In situ synthesized economical tungsten dioxide imbedded in mesoporous carbon for dye-sensitized solar cells as counter electrode catalyst. Journal of Physical Chemistry C 2011, 115, (45), 22598-22602.
[296] Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. and Winiwarter, W., How a century of ammonia synthesis changed the world. Nature Geoscience 2008, 1, (10), 636-639.
[297] Su, D. S., Zhang, J., Frank, B., Thomas, A., Wang, X. C., Paraknowitsch, J. and Schlogl, R., Metal-free heterogeneous catalysis for sustainable chemistry. Chemsuschem 2010, 3, (2), 169-180.
[298] Lu, A. H., Nitz, J. J., Comotti, M., Weidenthaler, C., Schlichte, K., Lehmann, C. W., Terasaki, O. and Schuth, F., Spatially and size selective synthesis of fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition. Journal of the American Chemical Society 2010, 132, (40), 14152-14162.
[299] Li, L., Zhu, Z. H., Yan, Z. F., Lu, G. Q. and Rintoul, L., Catalytic ammonia decomposition over ru/carbon catalysts: The importance of the structure of carbon support. Applied Catalysis a-General 2007, 320, 166-172.
[300] Chai, S. H., Howe, J. Y., Wang, X. Q., Kidder, M., Schwartz, V., Golden, M. L., Overbury, S. H., Dai, S. and Jiang, D. E., Graphitic mesoporous carbon as a support of promoted rh catalysts for hydrogenation of carbon monoxide to ethanol. Carbon 2012, 50, (4), 1574-1582.
[301] Min, K. I., Choi, J. S., Chung, Y. M., Ahn, W. S., Ryoo, R. and Lim, P. K., P-aminophenol synthesis in an organic/aqueous system using pt supported on mesoporous carbons. Applied Catalysis a-General 2008, 337, (1), 97-104.
[302] Harada, T., Ikeda, S., Miyazaki, M., Sakata, T., Mori, H. and Matsumura, M., A simple method for preparing highly active palladium catalysts loaded on various carbon supports for liquid-phase oxidation and hydrogenation reactions. Journal of Molecular Catalysis a-Chemical 2007, 268, (1-2), 59-64.
[303] Lu, A. H., Li, W. C., Hou, Z. S. and Schuth, F., Molecular level dispersed pd clusters in the carbon walls of ordered mesoporous carbon as a highly selective alcohol oxidation catalyst. Chemical Communications 2007, (10), 1038-1040.
[304] Huwe, H. and Froba, M., Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon cmk-3. Carbon 2007, 45, (2), 304-314.
[305] Lima, C. L., Campos, O. S., Oliveira, A. C., de Sousa, F. F., Mendes, J., Neto, P. L., Correia, A. N., Sabadia, G. Q., Nogueira, I. M., Pinheiro, G. S. and Oliveira, A. C., Synthesis, characterization and catalytic performance of metal-containing mesoporous carbons for styrene production. Applied Catalysis a-General 2011, 395, (1-2), 53-63.
[306] Lee, J. J., Han, S., Kim, H., Koh, J. H., Hyeon, T. and Moon, S. H., Performance of comos catalysts supported on nanoporous carbon in the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Catalysis Today 2003, 86, (1-4), 141-149.
[307] Ahn, W. S., Min, K. I., Chung, Y. M., Rhee, H. K., Joo, S. H. and Ryoo, R., Novel mesoporous carbon as a catalyst support for pt and pd for liquid phase hydrogenation reactions. Catalyst Deactivation 2001, Proceedings 2001, 313-320.
[308] Lu, A. H., Schmidt, W., Matoussevitch, N., Bonnemann, H., Spliethoff, B., Tesche, B., Bill, E., Kiefer, W. and Schuth, F., Nanoengineering of a magnetically separable hydrogenation catalyst. Angewandte Chemie-International Edition 2004, 43, (33), 4303-4306.
[309] Handa, P., Witula, T., Reis, P. and Holmberg, K., Use of ordered mesoporous materials as tools for organic and bioorganic synthesis. Arkivoc 2008, 107-118.
[310] Lapkin, A., Bozkaya, B., Mays, T., Borello, L., Edler, K. and Crittenden, B., Preparation and characterisation of chemisorbents based on heteropolyacids supported on synthetic mesoporous carbons and silica. Catalysis Today 2003, 81, (4), 611-621.
[311] Hu, Q. Y., Pang, J. B., Jiang, N., Hampsey, J. E. and Lu, Y. F., Direct synthesis of palladium-containing mesoporous carbon. Microporous and Mesoporous Materials 2005, 81, (1-3), 149-154.
[312] Shao, L. D., Zhang, W., Armbruster, M., Teschner, D., Girgsdies, F., Zhang, B. S., Timpe, O., Friedrich, M., Schlogl, R. and Su, D. S., Nanosizing intermetallic compounds onto carbon nanotubes: Active and selective hydrogenation catalysts. Angewandte Chemie-International Edition 2011, 50, (43), 10231-10235.
[313] Zhang, Y. H., Wang, A. Q. and Zhang, T., A new 3d mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol. Chemical Communications 2010, 46, (6), 862-864.
[314] Sun, Z. K., Sun, B., Qiao, M. H., Wei, J., Yue, Q., Wang, C., Deng, Y. H., Kaliaguine, S. and Zhao, D. Y., A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for fischer-tropsch synthesis. Journal of the American Chemical Society 2012, 134, (42), 17653-17660.
[315] Liu, L., Deng, Q. F., Agula, B., Zhao, X., Ren, T. Z. and Yuan, Z. Y., Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene. Chemical Communications 2011, 47, (29), 8334-8336.
[316] Schuth, F., Palkovits, R., Schlogl, R. and Su, D. S., Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition. Energy & Environmental Science 2012, 5, (4), 6278-6289.
[317] Zhang, J., Liu, X., Blume, R., Zhang, A. H., Schlogl, R. and Su, D. S., Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 2008, 322, (5898), 73-77.
[318] Yue, Q., Wang, M. H., Wei, J., Deng, Y. H., Liu, T. Y., Che, R. C., Tu, B. and Zhao, D. Y., A template carbonization strategy to synthesize ordered mesoporous silica microspheres with trapped sulfonated carbon nanoparticles for efficient catalysis. Angewandte Chemie-International Edition 2012, 51, (41), 10368-10372.
[319] Centi, G. and Perathoner, S., Problems and perspectives in nanostructured carbon-based electrodes for clean and sustainable energy. Catalysis Today 2010, 150, (1-2), 151-162.
[320] Zhuang, X., Wan, Y., Feng, C. M., Shen, Y. and Zhao, D. Y., Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons. Chemistry of Materials 2009, 21, (4), 706-716.
[321] Ariga, K., Vinu, A., Miyahara, M., Hill, J. P. and Mori, T., One-pot separation of tea components through selective adsorption on pore-engineered nanocarbon, carbon nanocage. Journal of the American Chemical Society 2007, 129, (36), 11022-11023.
[322] Vinu, A., Miyahara, M., Sivamurugan, V., Mori, T. and Ariga, K., Large pore cage type mesoporous carbon, carbon nanocage: A superior adsorbent for biomaterials. Journal of Materials Chemistry 2005, 15, (48), 5122-5127.
[323] Qin, H. Q., Gao, P., Wang, F. J., Zhao, L., Zhu, J., Wang, A. Q., Zhang, T., Wu, R. and Zou, H. F., Highly efficient extraction of serum peptides by ordered mesoporous carbon. Angewandte Chemie-International Edition 2011, 50, (51), 12218-12221.
[324] Lee, D., Lee, J., Kim, J., Kim, J., Na, H. B., Kim, B., Shin, C. H., Kwak, J. H., Dohnalkova, A., Grate, J. W., Hyeon, T. and Kim, H. S., Simple fabrication of a highly sensitive and fast glucose biosensor using enzymes immobilized in mesocellular carbon foam. Advanced Materials 2005, 17, (23), 2828-2833.
[325] Hartmann, M., Ordered mesoporous materials for bioadsorption and biocatalysis. Chemistry of Materials 2005, 17, (18), 4577-4593.
[326] Walker, G. M. and Weatherley, L. R., Adsorption of dyes from aqueous solution - the effect of adsorbent pore size distribution and dye aggregation. Chemical Engineering Journal 2001, 83, (3), 201-206.
[327] Hsieh, C. T. and Teng, H. S., Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon 2000, 38, (6), 863-869.
[328] Kim, S. I., Yamamoto, T., Endo, A., Ohmori, T. and Nakaiwa, M., Adsorption of phenol and reactive dyes from aqueous solution on carbon cryogel microspheres with controlled porous structure. Microporous and Mesoporous Materials 2006, 96, (1-3), 191-196.
[329] Han, S. J., Sohn, K. and Hyeon, T., Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes. Chemistry of Materials 2000, 12, (11), 3337-3341.
[330] Han, S. J., Kim, S., Lim, H., Choi, W. Y., Park, H., Yoon, J. and Hyeon, T., New nanoporous carbon materials with high adsorption capacity and rapid adsorption kinetics for removing humic acids. Microporous and Mesoporous Materials 2003, 58, (2), 131-135.
[331] Sun, Z. H., Wang, L. F., Liu, P. P., Wang, S. C., Sun, B., Jiang, D. Z. and Xiao, F. S., Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles. Advanced Materials 2006, 18, (15), 1968-1971.
[332] Wang, X. Q. and Dai, S., A simple method to ordered mesoporous carbons containing nickel nanoparticles. Adsorption-Journal of the International Adsorption Society 2009, 15, (2), 138-144.
[333] Su, F. B., Lv, L., Hui, T. M. and Zhao, X. S., Phenol adsorption on zeolite-templated carbons with different structural and surface properties. Carbon 2005, 43, (6), 1156-1164.
[334] Hou, P. X., Orikasa, H., Yamazaki, T., Matsuoka, K., Tomita, A., Setoyama, N., Fukushima, Y. and Kyotani, T., Synthesis of nitrogen-containing microporous carbon with a highly ordered structure and effect of nitrogen doping on h2o adsorption. Chemistry of Materials 2005, 17, (20), 5187-5193.
[335] Garsuch, A., Sattler, R. R., Witt, S. and Klepel, O., Adsorption properties of various carbon materials prepared by template synthesis route. Microporous and Mesoporous Materials 2006, 89, (1-3), 164-169.
[336] Bell, J. G., Zhao, X. B., Uygur, Y. and Thomas, K. M., Adsorption of chloroaromatic models for dioxins on porous carbons: The influence of adsorbate structure and surface functional groups on surface interactions and adsorption kinetics. Journal of Physical Chemistry C 2011, 115, (6), 2776-2789.
[337] Ariga, K., Vinu, A., Ji, Q. M., Ohmori, O., Hill, J. P., Acharya, S., Koike, J. and Shiratori, S., A layered mesoporous carbon sensor based on nanopore-filling cooperative adsorption in the liquid phase. Angewandte Chemie-International Edition 2008, 47, (38), 7254-7257.
[338] Vinu, A., Streb, C., Murugesan, V. and Hartmann, M., Adsorption of cytochrome c on new mesoporous carbon molecular sieves. Journal of Physical Chemistry B 2003, 107, (33), 8297-8299.
[339] Guo, Z., Zhu, G. S., Gao, B., Zhang, D. L., Tian, G., Chen, Y., Zhang, W. W. and Qiu, S. L., Adsorption of vitamin b12 on ordered mesoporous carbons coated with pmma. Carbon 2005, 43, (11), 2344-2351.
[340] Vinu, A., Hossain, K. Z., Kumar, G. S. and Ariga, K., Adsorption of l-histidine over mesoporous carbon molecular sieves. Carbon 2006, 44, (3), 530-536.
[341] Vinu, A., Miyahara, M. and Ariga, K., Biomaterial immobilization in nanoporous carbon molecular sieves: Influence of solution ph, pore volume, and pore diameter. Journal of Physical Chemistry B 2005, 109, (13), 6436-6441.
[342] Lei, Z. B., Cao, Y. D., Dang, L. Q., Lo, A. Y., Yu, N. Y. and Liu, S. B., Adsorption of lysozyme on spherical mesoporous carbons (smcs) replicated from colloidal silica arrays by chemical vapor deposition. Journal of Colloid and Interface Science 2009, 339, (2), 439-445.
[343] Datta, K. K. R., Vinu, A., Mandal, S., Al-Deyab, S., Hill, J. P. and Ariga, K., Base-selective adsorption of nucleosides to pore-engineered nanocarbon, carbon nanocage. Journal of Nanoscience and Nanotechnology 2011, 11, (5), 3959-3964.
[344] Sui, Q., Huang, J., Liu, Y. S., Chang, X. F., Ji, G. B., Deng, S. B., Xie, T. and Yu, G., Rapid removal of bisphenol a on highly ordered mesoporous carbon. Journal of Environmental Sciences-China 2011, 23, (2), 177-182.
[345] Datta, K. K. R., Vinu, A., Mandal, S., Al-Deyab, S., Hill, J. P. and Ariga, K., Carbon nanocage: Super-adsorber of intercalators for DNA protection. Journal of Nanoscience and Nanotechnology 2011, 11, (4), 3084-3090.
[346] Hartmann, M., Vinu, A. and Chandrasekar, G., Adsorption of vitamin e on mesoporous carbon molecular sieves. Chemistry of Materials 2005, 17, (4), 829-833.
[347] Vinu, A., Hossian, K. Z., Srinivasu, P., Miyahara, M., Anandan, S., Gokulakrishnan, N., Mori, T., Ariga, K. and Balasubramanian, V. V., Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. Journal of Materials Chemistry 2007, 17, (18), 1819-1825.
[348] Oren, Y., Capacitive delonization (cdi) for desalination and water treatment - past, present and future (a review). Desalination 2008, 228, (1-3), 10-29.
[349] Anderson, M. A., Cudero, A. L. and Palma, J., Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta 2010, 55, (12), 3845-3856.
[350] Gabelich, C. J., Tran, T. D. and Suffet, I. H., Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environmental Science & Technology 2002, 36, (13), 3010-3019.
[351] Zou, L. D., Li, L. X., Song, H. H. and Morris, G., Using mesoporous carbon electrodes for brackish water desalination. Water Research 2008, 42, (8-9), 2340-2348.
[352] Li, L. X., Zou, L. D., Song, H. H. and Morris, G., Ordered mesoporous carbons synthesized by a modified sol-gel process for electrosorptive removal of sodium chloride. Carbon 2009, 47, (3), 775-781.
[353] Mayes, R. T., Tsouris, C., Kiggans, J. O., Mahurin, S. M., DePaoli, D. W. and Dai, S., Hierarchical ordered mesoporous carbon from phloroglucinol-glyoxal and its application in capacitive deionization of brackish water. Journal of Materials Chemistry 2010, 20, (39), 8674-8678.
[354] Peng, Z., Zhang, D. S., Shi, L. Y., Yan, T. T., Yuan, S. A., Li, H. R., Gao, R. H. and Fang, J. H., Comparative electroadsorption study of mesoporous carbon electrodes with various pore structures. Journal of Physical Chemistry C 2011, 115, (34), 17068-17076.
[355] Tsouris, C., Mayes, R., Kiggans, J., Sharma, K., Yiacoumi, S., DePaoli, D. and Dai, S., Mesoporous carbon for capacitive deionization of saline water. Environmental Science & Technology 2011, 45, (23), 10243-10249.
[356] Peng, Z., Zhang, D. S., Shi, L. Y. and Yan, T. T., High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization. Journal of Materials Chemistry 2012, 22, (14), 6603-6612.
[357] Zhang, D. S., Wen, X. R., Shi, L. Y., Yan, T. T. and Zhang, J. P., Enhanced capacitive deionization of graphene/mesoporous carbon composites. Nanoscale 2012, 4, (17), 5440-5446.
[358] Wen, X., Zhang, D., Shi, L.-Y., Yan, T., Wang, H. and Zhang, J., Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization. Journal of Materials Chemistry 2012, 22, 23835-23844.
[359] Suss, M. E., Baumann, T. F., Bourcier, W. L., Spadaccini, C. M., Rose, K. A., Santiago, J. G. and Stadermann, M., Capacitive desalination with flow-through electrodes. Energy & Environmental Science 2012.
[360] Tsai, H. C. and Doong, R. A., Simultaneous determination of ph, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor. Biosensors & Bioelectronics 2005, 20, (9), 1796-1804.
[361] Zhou, M., Guo, L. P., Lin, F. Y. and Liu, H. X., Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified. Analytica Chimica Acta 2007, 587, (1), 124-131.
[362] Feng, J. J., Xu, J. J. and Chen, H. Y., Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly. Biosensors & Bioelectronics 2007, 22, (8), 1618-1624.
[363] Zhou, M., Shang, L., Li, B. L., Huang, L. J. and Dong, S. J., Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Biosensors & Bioelectronics 2008, 24, (3), 442-447.
[364] Yu, J. J., Yu, D. L., Zhao, T. and Zeng, B. Z., Development of amperometric glucose biosensor through immobilizing enzyme in a pt nanoparticles/mesoporous carbon matrix. Talanta 2008, 74, (5), 1586-1591.
[365] Hou, Y., Guo, L. P. and Wang, G., Synthesis and electrochemical performance of ordered mesoporous carbons with different pore characteristics for electrocatalytic oxidation of hydroquinone. Journal of Electroanalytical Chemistry 2008, 617, (2), 211-217.
[366] Shao, Y. Y., Wang, J., Wu, H., Liu, J., Aksay, I. A. and Lin, Y. H., Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, (10), 1027-1036.
[367] Zhou, M., Shang, L., Li, B. L., Huang, L. J. and Dong, S. J., The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes. Electrochemistry Communications 2008, 10, (6), 859-863.
[368] Zhu, L., Tian, C., Zhu, D. and Yang, R., Ordered mesoporous carbon paste electrodes for electrochemical sensing and biosensing. Electroanalysis 2008, 20, (10), 1128-1134.
[369] Ndamanisha, J. C., Bai, J., Qj, B. and Guo, L., Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. Analytical Biochemistry 2009, 386, (1), 79-84.
[370] Bai, J., Guo, L. P., Ndamanisha, J. C. and Qi, B., Electrochemical properties and simultaneous determination of dihydroxybenzene isomers at ordered mesoporous carbon-modified electrode. Journal of Applied Electrochemistry 2009, 39, (12), 2497-2503.
[371] Jia, N. Q., Wang, Z. Y., Yang, G. F., Shen, H. B. and Zhu, L. Z., Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine. Electrochemistry Communications 2007, 9, (2), 233-238.
[372] Wu, L. D., Lu, X. B., Zhang, H. J. and Chen, J. P., Amino acid ionic liquid modified mesoporous carbon: A tailor-made nanostructure biosensing platform. Chemsuschem 2012, 5, (10), 1918-1925.
[373] Jia, L. C., Mane, G. P., Anand, C., Dhawale, D. S., Ji, Q. M., Ariga, K. and Vinu, A., A facile photo-induced synthesis of cooh functionalized meso-macroporous carbon films and their excellent sensing capability for aromatic amines. Chemical Communications 2012, 48, (72), 9029-9031.
[374] Song, S. Q., Gao, Q. M., Xia, K. S. and Gao, L., Selective determination of dopamine in the presence of ascorbic acid at porous-carbon-modified glassy carbon electrodes. Electroanalysis 2008, 20, (11), 1159-1166.
[375] Zhou, M., Ding, J., Guo, L. P. and Shang, Q. K., Electrochemical behavior of l-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Analytical Chemistry 2007, 79, (14), 5328-5335.
[376] Zang, J. F., Guo, C. X., Hu, F. P., Yu, L. and Li, C. M., Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon. Analytica Chimica Acta 2011, 683, (2), 187-191.
[377] Li, F., Song, J. X., Shan, C. S., Gao, D. M., Xu, X. Y. and Niu, L., Electrochemical determination of morphine at ordered mesoporous carbon modified glassy carbon electrode. Biosensors & Bioelectronics 2010, 25, (6), 1408-1413.
[378] Zhu, L. D., Tian, C. Y., Yang, R. L. and Zhai, J. L., Anodic stripping voltammetric determination of lead in tap water at an ordered mesoporous carbon/nafion composite film electrode. Electroanalysis 2008, 20, (5), 527-533.
[379] Guo, Z., Li, S., Liu, X. M., Gao, Y. P., Zhang, W. W. and Ding, X. P., Mesoporous carbon-polyaniline electrode: Characterization and application to determination of copper and lead by anodic stripping voltammetry. Materials Chemistry and Physics 2011, 128, (1-2), 238-242.
[380] Lai, C. Z., Fierke, M. A., Stein, A. and Buhlmann, P., Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. Analytical Chemistry 2007, 79, (12), 4621-4626.
[381] Lai, C. Z., Joyer, M. M., Fierke, M. A., Petkovich, N. D., Stein, A. and Buhlmann, P., Subnanomolar detection limit application of ion-selective electrodes with three-dimensionally ordered macroporous (3dom) carbon solid contacts. Journal of Solid State Electrochemistry 2009, 13, (1), 123-128.
[382] You, C. P., Yan, X. W., Kong, J. L., Zhao, D. Y. and Liu, B. H., Direct electrochemistry of myoglobin based on bicontinuous gyroidal mesoporous carbon matrix. Electrochemistry Communications 2008, 10, (12), 1864-1867.
[383] Pei, S. P., Qu, S. and Zhang, Y. M., Direct electrochemistry and electrocatalysis of hemoglobin at mesoporous carbon modified electrode. Sensors 2010, 10, (2), 1279-1290.
[384] Wang, K. Q., Yang, H., Zhu, L., Ma, Z. S., Xing, S. Y., Lv, Q., Liao, J. H., Liu, C. P. and Xing, W., Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with nafion and mesoporous carbon fdu-15. Electrochimica Acta 2009, 54, (20), 4626-4630.
[385] You, C. P., Xu, X., Tian, B. Z., Kong, J. L., Zhao, D. Y. and Liu, B. H., Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions. Talanta 2009, 78, (3), 705-710.
[386] Zeng, L. X., Li, Q. F., Tang, D. P., Chen, G. N. and Wei, M. D., Metal platinum-wrapped mesoporous carbon for sensitive electrochemical immunosensing based on cyclodextrin functionalized graphene nanosheets. Electrochimica Acta 2012, 68, 158-165.
[387] Ji, Q. M., Yoon, S. B., Hill, J. P., Vinu, A., Yu, J. S. and Ariga, K., Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. Journal of the American Chemical Society 2009, 131, (12), 4220-4221.
[388] http://en.wikipedia.org/wiki/Phenol_formaldehyde_resin.
[389] Brinker, C. J. and Scherer, G. W., Academic Press, San Diego, 1990.
[390] Liu, R., Ren, Y., Shi, Y., Zhang, F., Zhang, L., Tu, B. and Zhao, D., Controlled synthesis of ordered mesoporous c-tio2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly. Chemistry of Materials 2008, 20, (3), 1140-1146.
[391] Liu, R. L., Shi, Y. F., Wan, Y., Meng, Y., Zhang, F. Q., Gu, D., Chen, Z. X., Tu, B. and Zhao, D. Y., Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. Journal of the American Chemical Society 2006, 128, (35), 11652-11662.
[392] Kang, E., Jung, Y. S., Kim, G. H., Chun, J., Wiesner, U., Dillon, A. C., Kim, J. K. and Lee, J., Highly improved rate capability for a lithium-ion battery nano-li4ti5o12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method. Advanced Functional Materials 2011, 21, (22), 4349-4357.
[393] Ma, Z. X., Kyotani, T. and Tomita, A., Preparation of a high surface area microporous carbon having the structural regularity of y zeolite. Chemical Communications 2000, (23), 2365-2366.
[394] Zhao, J. Z., Cheng, F. Y., Yi, C. H., Liang, J., Tao, Z. L. and Chen, J., Facile synthesis of hierarchically porous carbons and their application as a catalyst support for methanol oxidation. Journal of Materials Chemistry 2009, 19, (24), 4108-4116.
[395] Lu, X. B., Xiao, Y., Lei, Z. B. and Chen, J. P., Graphitized macroporous carbon microarray with hierarchical mesopores as host for the fabrication of electrochemical biosensor. Biosensors & Bioelectronics 2009, 25, (1), 244-247.
[396] Lu, A. H., Li, W. C., Hao, G. P., Spliethoff, B., Bongard, H. J., Schaack, B. B. and Schuth, F., Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angewandte Chemie-International Edition 2010, 49, (9), 1615-1618.
[397] Sevilla, M. and Fuertes, A. B., Catalytic graphitization of templated mesoporous carbons. Carbon 2006, 44, (3), 468-474.
[398] Fu, R. W., Baumann, T. F., Cronin, S., Dresselhaus, G., Dresselhaus, M. S. and Satcher, J. H., Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels. Langmuir 2005, 21, (7), 2647-2651.
[399] Lei, Z. B., Xiao, Y., Dang, L. Q., You, W. S., Hu, G. S. and Zhang, J., Nickel-catalyzed fabrication of sio2, tio2/graphitized carbon, and the resultant graphitized carbon with periodically macroporous structure. Chemistry of Materials 2007, 19, (3), 477-484.
[400] Zhai, Y. P., Dou, Y. Q., Liu, X. X., Tu, B. and Zhao, D. Y., One-pot synthesis of magnetically separable ordered mesoporous carbon. Journal of Materials Chemistry 2009, 19, (20), 3292-3300.
[401] Huang, J. Q., Zhang, Q., Zhao, M. Q. and Wei, F., The release of free standing vertically-aligned carbon nanotube arrays from a substrate using co2 oxidation. Carbon 2010, 48, (5), 1441-1450.
[402] Amini, N., Aguey-Zinsou, K. F. and Guo, Z. X., Processing of strong and highly conductive carbon foams as electrode. Carbon 2011, 49, (12), 3857-3864.
[403] Tessonnier, J. P. and Su, D. S., Recent progress on the growth mechanism of carbon nanotubes: A review. ChemSusChem 2011, 4, (7), 824-847.
[404] Rinaldi, A. R., A., Tessonnier, J. P., Schuster, M. E., Blume, R., Girgsdies, F., Zhang, Q. A., Jacob, T., Hamid, S. B. A., Su, D. S. and Schlogl, R., Dissolved carbon controls the initial stages of nanocarbon growth. Angewandte Chemie-International Edition 2011, 50, (14), 3313-3317.
[405] Ferrari, A. C. and Robertson, J., Interpretation of raman spectra of disordered and amorphous carbon. Physical Review B 2000, 61, (20), 14095-14107.
[406] Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R. and Poschl, U., Raman micro spectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, (8), 1731-1742.
[407] Liu, X. G., Ou, Z. Q., Geng, D. Y., Han, Z., Jiang, J. J., Liu, W. and Zhang, Z. D., Influence of a graphite shell on the thermal and electromagnetic characteristics of feni nanoparticles. Carbon 2010, 48, (3), 891-897.
[408] Larciprete, R., Lizzit, S., Botti, S., Cepek, C. and Goldoni, A., Structural reorganization of carbon nanoparticles into single-wall nanotubes. Physical Review B 2002, 66, (12), 121402.
[409] Abbas, M., Wu, Z. Y., Zhong, J., Ibrahim, K., Fiori, A., Orlanducci, S., Sessa, V., Terranova, M. L. and Davoli, I., X-ray absorption and photoelectron spectroscopy studies on graphite and single-walled carbon nanotubes: Oxygen effect. Applied Physics Letters 2005, 87, (5), 051923.
[410] Banerjee, S., Hemraj-Benny, T., Balasubramanian, M., Fischer, D. A., Misewich, J. A. and Wong, S. S., Surface chemistry and structure of purified, ozonized, multiwalled carbon nanotubes probed by nexafs and vibrational spectroscopies. ChemPhysChem 2004, 5, (9), 1416-1422.
[411] Kuznetsova, A., Popova, I., Yates, J. T., Bronikowski, M. J., Huffman, C. B., Liu, J., Smalley, R. E., Hwu, H. H. and Chen, J. G. G., Oxygen-containing functional groups on single-wall carbon nanotubes: Nexafs and vibrational spectroscopic studies. Journal Of The American Chemical Society 2001, 123, (43), 10699-10704.
[412] Larciprete, R., Lizzit, S., Botti, S., Cepek, C. and Goldoni, A., Structural reorganization of carbon nanoparticles into single-wall nanotubes. Physical Review B 2002, 66, (12).
[413] Fuertes, A. B. and Centeno, T. A., Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. Journal of Materials Chemistry 2005, 15, (10), 1079-1083.
[414] Lu, X. B., Xiao, Y., Lei, Z. B., Chen, J. P., Zhang, H. J., Ni, Y. W. and Zhang, Q., A promising electrochemical biosensing platform based on graphitized ordered mesoporous carbon. Journal of Materials Chemistry 2009, 19, (27), 4707-4714.
[415] Jun, Y. S., Hong, W. H., Antonietti, M. and Thomas, A., Mesoporous, 2d hexagonal carbon nitride and titanium nitride/carbon composites. Advanced Materials 2009, 21, (42), 4270-4274.
[416] Shi, Y. F., Wan, Y. and Zhao, D. Y., Ordered mesoporous non-oxide materials. Chemical Society Reviews 2011, 40, (7), 3854-3878.
[417] Borchardt, L., Hoffmann, C., Oschatz, M., Mammitzsch, L., Petasch, U., Herrmann, M. and Kaskel, S., Preparation and application of cellular and nanoporous carbides. Chemical Society Reviews 2012, 41, 5053-5067.
[418] Ren, Y., Ma, Z. and Bruce, P. G., Ordered mesoporous metal oxides: Synthesis and applications. Chemical Society Reviews 2012, 41, (14), 4909-4927.
[419] Stefik, M., Lee, J. and Wiesner, U., Nanostructured carbon-crystalline titania composites from microphase separation of poly(ethylene oxide-b-acrylonitrile) and titania sols. Chemical Communications 2009, (18), 2532-2534.
[420] Yu, T., Deng, Y. H., Wang, L., Liu, R. L., Zhang, L. J., Tu, B. and Zhao, D. Y., Ordered mesoporous nanocrystalline titanium-carbide/carbon composites from in situ carbothermal reduction. Advanced Materials 2007, 19, (17), 2301-2306.
[421] Lee, J., Jung, Y. S., Warren, S. C., Kamperman, M., Oh, S. M., DiSalvo, F. J. and Wiesner, U., Direct access to mesoporous crystalline tio2/carbon composites with large and uniform pores for use as anode materials in lithium ion batteries. Macromolecular Chemistry and Physics 2011, 212, (4), 383-390.
[422] Ishii, Y., Kanamori, Y., Kawashita, T., Mukhopadhyay, I. and Kawasaki, S., Mesoporous carbon-titania nanocomposites for high-power li-ion battery anode material. Journal of Physics and Chemistry of Solids 2010, 71, (4), 511-514.
[423] Gorka, J. and Jaroniec, M., Incorporation of inorganic nanoparticles into mesoporous carbons synthesized by soft templating. Journal of Physical Chemistry C 2008, 112, (31), 11657-11660.
[424] Zhou, Y., Kim, Y., Jo, C., Lee, J., Lee, C. W. and Yoon, S., A novel mesoporous carbon-silica-titania nanocomposite as a high performance anode material in lithium ion batteries. Chemical Communications 2011, 47, (17), 4944-4946.
[425] Xu, J. M., Wang, A. Q., Wang, X. D., Su, D. S. and Zhang, T., Synthesis, characterization, and catalytic application of highly ordered mesoporous alumina-carbon nanocomposites. Nano Research 2011, 4, (1), 50-60.
[426] Zhou, J. H., He, J. P., Li, G. X., Wang, T., Sun, D., Ding, X. C., Zhao, J. Q. and Wu, S. C., Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers. Journal of Physical Chemistry C 2010, 114, (17), 7611-7617.
[427] Hagfeldt, A. and Gratzel, M., Light-induced redox reactions in nanocrystalline systems. Chemical Reviews 1995, 95, (1), 49-68.
[428] Toyoda, M., Yano, T., Tryba, B., Mozia, S., Tsumura, T. and Inagaki, M., Preparation of carbon-coated magneli phases ti(n)o(2n-1) and their photocatalytic activity under visible light. Applied Catalysis B-Environmental 2009, 88, (1-2), 160-164.
[429] Jiang, Z. P. and Rhine, W. E., Preparation of tin and tic from a polymeric precursor. Chemistry of Materials 1991, 3, (6), 1132-1137.
[430] Shin, Y. S., Li, X. H. S., Wang, C. M., Coleman, J. R. and Exarhos, G. J., Synthesis of hierarchical titanium carbide from titania-coated cellulose paper. Advanced Materials 2004, 16, (14), 1212-1215.
[431] Hsu, Y. C., Lin, H. C., Lue, C. W., Liao, Y. T. and Yang, C. M., A novel synthesis of carbon-coated anatase nanocrystals showing high adsorption capacity and photocatalytic activity. Applied Catalysis B-Environmental 2009, 89, (3-4), 309-314.
[432] Guo, Y. G., Hu, J. S. and Wan, L. J., Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials 2008, 20, (15), 2878-2887.
[433] Kondo, J. N. and Domen, K., Crystallization of mesoporous metal oxides. Chemistry of Materials 2008, 20, (3), 835-847.
[434] Lee, J., Orilall, M. C., Warren, S. C., Kamperman, M., Disalvo, F. J. and Wiesner, U., Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nature Materials 2008, 7, (3), 222-228.
[435] Inagaki, M., Hirose, Y., Matsunaga, T., Tsumura, T. and Toyoda, M., Carbon coating of anatase-type tio2 through their precipitation in pva aqueous solution. Carbon 2003, 41, (13), 2619-2624.
[436] Tseng, Y. H., Lin, H. Y., Kuo, C. S., Li, Y. Y. and Huang, C. P., Thermostability of nano-tio2 and its photocatalytic activity. Reaction Kinetics and Catalysis Letters 2006, 89, (1), 63-69.
[437] Chang, S. M. and Doong, R. A., Characterization of zr-doped tio2 nanocrystals prepared by a nonhydrolytic sol-gel method at high temperatures. Journal of Physical Chemistry B 2006, 110, (42), 20808-20814.
[438] LeDuc, C. A., Campbell, J. M. and Rossin, J. A., Effect of lanthana as a stabilizing agent in titanium dioxide support. Industrial & Engineering Chemistry Research 1996, 35, (7), 2473-2476.
[439] Zhang, L. W., Fu, H. B. and Zhu, Y. F., Efficient tio(2) photocatalysts from surface hybridization of tio(2) particles with graphite-like carbon. Advanced Functional Materials 2008, 18, (15), 2180-2189.
[440] Tsumura, T., Kojitani, N., Izumi, I., Iwashita, N., Toyoda, M. and Inagaki, M., Carbon coating of anatase-type tio2 and photoactivity. Journal of Materials Chemistry 2002, 12, (5), 1391-1396.
[441] Shimomura, K., Muramatsu, Y., Denlinger, J. D. and Gullikson, E. M., High-resolution soft x-ray spectral analysis in the ck region of titanium carbide using the dv-x alpha molecular orbital method. International Journal of Quantum Chemistry 2009, 109, (12), 2722-2727.
[442] Fronzoni, G., Francesco, R., Stener, M. and Causa, M., X-ray absorption spectroscopy of titanium oxide by time dependent density functional calculations. Journal of Physical Chemistry B 2006, 110, (20), 9899-9907.
[443] Pickup, D. M., Abou Neel, E. A., Moss, R. M., Wetherall, K. M., Guerry, P., Smith, M. E., Knowles, J. C. and Newport, R. J., Tik-edge xanes study of the local environment of titanium in bioresorbable tio(2)-cao-na(2)o-p(2)o(5) glasses. Journal of Materials Science-Materials in Medicine 2008, 19, (4), 1681-1685.
[444] Farges, F., Brown, G. E. and Rehr, J. J., Ti k-edge xanes studies of ti coordination and disorder in oxide compounds: Comparison between theory and experiment. Physical Review B 1997, 56, (4), 1809-1819.
[445] White, G. V., Mackenzie, K. J. D., Brown, I. W. M., Bowden, M. E. and Johnston, J. H., Carbothermal synthesis of titanium nitride .2. The reaction sequence. Journal of Materials Science 1992, 27, (16), 4294-4299.
[446] White, G. V., Mackenzie, K. J. D., Brown, I. W. M. and Johnston, J. H., Carbothermal synthesis of titanium nitride .3. Kinetics and mechanism. Journal of Materials Science 1992, 27, (16), 4300-4304.
[447] White, G. V., Mackenzie, K. J. D. and Johnston, J. H., Carbothermal synthesis of titanium nitride .1. Influence of starting materials. Journal of Materials Science 1992, 27, (16), 4287-4293.
[448] Abbate, M., Potze, R., Sawatzky, G. A., Schlenker, C., Lin, H. J., Tjeng, L. H., Chen, C. T., Teehan, D. and Turner, T. S., Changes in the electronic-structure of ti4o7 across the semiconductor-semiconductor-metal transitions. Physical Review B 1995, 51, (15), 10150-10153.
[449] Koc, R., Kinetics and phase evolution during carbothermal synthesis of titanium carbide from ultrafine titania/carbon mixture. Journal of Materials Science 1998, 33, (4), 1049-1055.
[450] Afir, A., Achour, M. and Saoula, N., X-ray diffraction study of ti-o-c system at high temperature and in a continuous vacuum. Journal of Alloys and Compounds 1999, 288, (1-2), 124-140.
[451] Peelamedu, R. D., Fleming, M., Agrawal, D. K. and Roy, R., Preparation of titanium nitride: Microwave-induced carbothermal reaction of titanium dioxide. Journal of the American Ceramic Society 2002, 85, (1), 117-122.
[452] Liborio, L. and Harrison, N., Thermodynamics of oxygen defective magneli phases in rutile: A first-principles study. Physical Review B 2008, 77, (10), 104104.
[453] Dong, S. M., Chen, X. A., Gu, L., Zhou, X. H., Xu, H. X., Wang, H. B., Liu, Z. H., Han, P. X., Yao, J. H., Wang, L., Cui, G. L. and Chen, L. Q., Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage. Acs Applied Materials & Interfaces 2011, 3, (1), 93-98.
[454] Li, J. G., Gao, L., Sun, J., Zhang, Q. H., Guo, J. K. and Yan, D. S., Synthesis of nanocrystalline titanium nitride powders by direct nitridation of titanium oxide. Journal of the American Ceramic Society 2001, 84, (12), 3045-3047.
[455] Yang, L., Lin, Y., Jia, H. G., Li, X. P., Xiao, X. R. and Zhou, X. W., Cauliflower-like tio2 rough spheres: Synthesis and applications in dye sensitized solar cells. Microporous and Mesoporous Materials 2008, 112, (1-3), 45-52.
[456] Alexaki, N., Stergiopoulos, T., Kontos, A. G., Tsoukleris, D. S., Katsoulidis, A. P., Pomonis, P. J., LeClere, D. J., Skeldon, P., Thompson, G. E. and Falaras, P., Mesoporous titania nanocrystals prepared using hexadecylamine surfactant template: Crystallization progress monitoring, morphological characterization and application in dye-sensitized solar cells. Microporous and Mesoporous Materials 2009, 124, (1-3), 52-58.
[457] Pan, J. H., Zhao, X. S. and Lee, W. I., Block copolymer-templated synthesis of highly organized mesoporous tio2-based films and their photoelectrochemical applications. Chemical Engineering Journal 2011, 170, (2-3), 363-380.
[458] Chen, Y., Huang, F. Z., Chen, D. H., Cao, L., Zhang, X. L., Caruso, R. A. and Cheng, Y. B., Effect of mesoporous tio2 bead diameter in working electrodes on the efficiency of dye-sensitized solar cells. ChemSusChem 2011, 4, (10), 1498-1503.
[459] Liao, J. Y., He, J. W., Xu, H. Y., Kuang, D. B. and Su, C. Y., Effect of tio2 morphology on photovoltaic performance of dye-sensitized solar cells: Nanoparticles, nanofibers, hierarchical spheres and ellipsoid spheres. Journal of Materials Chemistry 2012, 22, (16), 7910-7918.
[460] Hu, X. L., Li, G. S. and Yu, J. C., Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 2010, 26, (5), 3031-3039.
[461] Wilson, G. J., Matijasevich, A. S., Mitchell, D. R. G., Schulz, J. C. and Will, G. D., Modification of tio2 for enhanced surface properties: Finite ostwald ripening by a microwave hydrothermal process. Langmuir 2006, 22, (5), 2016-2027.
[462] Zhang, P. L., Yin, S. and Sato, T., Synthesis of high-activity tio2 photocatalyst via environmentally friendly and novel microwave assisted hydrothermal process. Applied Catalysis B-Environmental 2009, 89, (1-2), 118-122.
[463] Periyat, P., Leyland, N., McCormack, D. E., Colreavy, J., Corr, D. and Pillai, S. C., Rapid microwave synthesis of mesoporous tio2 for electrochromic displays. Journal of Materials Chemistry 2010, 20, (18), 3650-3655.
[464] Yin, H. B., Wada, Y., Kitamura, T., Sumida, T., Hasegawa, Y. and Yanagida, S., Novel synthesis of phase-pure nano-particulate anatase and rutile tio2 using ticl4 aqueous solutions. Journal of Materials Chemistry 2002, 12, (2), 378-383.
[465] Cozzoli, P. D., Kornowski, A. and Weller, H., Low-temperature synthesis of soluble and processable organic-capped anatase tio2 nanorods. Journal Of The American Chemical Society 2003, 125, (47), 14539-14548.
[466] Tang, Y. T., Pan, X., Zhang, C. N., Dai, S. Y., Kong, F. T., Hu, L. H. and Sui, Y. F., Influence of different electrolytes on the reaction mechanism of a triiodide/iodide redox couple on the platinized fto glass electrode in dye-sensitized solar cells. Journal of Physical Chemistry C 2010, 114, (9), 4160-4167.
[467] Chang, K. W., Lim, Z. Y., Du, F. Y., Yang, Y. L., Chang, C. H., Hu, C. C. and Lin, H. P., Synthesis of mesoporous carbon by using polymer blend as template for the high power supercapacitor. Diamond and Related Materials 2009, 18, (2-3), 448-451.
[468] Liang, Y. R., Liang, F. X., Wu, D. C., Li, Z. H., Xu, F. and Fu, R. W., Construction of a hierarchical architecture in a wormhole-like mesostructure for enhanced mass transport. Physical Chemistry Chemical Physics 2011, 13, (19), 8852-8856.
[469] Stoller, M. D., Park, S. J., Zhu, Y. W., An, J. H. and Ruoff, R. S., Graphene-based ultracapacitors. Nano Letters 2008, 8, (10), 3498-3502.
[470] Zhang, J., Hu, Y. S., Tessonnier, J. P., Weinberg, G., Maier, J., Schlogl, R. and Su, D. S., Cnfs@cnts: Superior carbon for electrochemical energy storage. Advanced Materials 2008, 20, (8), 1450-1455.
[471] Wei, L., Sevilla, M., Fuertes, A. B., Mokaya, R. and Yushin, G., Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Advanced Energy Materials 2011, 1, (3), 356-361.
[472] Xing, W., Huang, C. C., Zhuo, S. P., Yuan, X., Wang, G. Q., Hulicova-Jurcakova, D., Yan, Z. F. and Lu, G. Q., Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 2009, 47, (7), 1715-1722.
[473] Deng, D., Kim, M. G., Lee, J. Y. and Cho, J., Green energy storage materials: Nanostructured tio(2) and sn-based anodes for lithium-ion batteries. Energy & Environmental Science 2009, 2, (8), 818-837.
[474] Kim, H., Kim, M. G., Shin, T. J., Shin, H. J. and Cho, J., Tio2@sn core-shell nanotubes for fast and high density li-ion storage material. Electrochemistry Communications 2008, 10, (11), 1669-1672.
[475] Liu, D. W. and Cao, G. Z., Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy & Environmental Science 2010, 3, (9), 1218-1237.
[476] Ortiz, G. F., Hanzu, I., Lavela, P., Tirado, J. L., Knauth, P. and Djenizian, T., A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for li-ion microbatteries. Journal of Materials Chemistry 2010, 20, (20), 4041-4046.
[477] Park, C. M., Chang, W. S., Jung, H., Kim, J. H. and Sohn, H. J., Nanostructured sn/tio(2)/c composite as a high-performance anode for li-ion batteries. Electrochemistry Communications 2009, 11, (11), 2165-2168.
[478] Wang, D. H., Choi, D. W., Yang, Z. G., Viswanathan, V. V., Nie, Z. M., Wang, C. M., Song, Y. J., Zhang, J. G. and Liu, J., Synthesis and li-ion insertion properties of highly crystalline mesoporous rutile tio2. Chemistry of Materials 2008, 20, (10), 3435-3442.
[479] Xu, J. W., Ha, C. H., Cao, B. and Zhang, W. F., Electrochemical properties of anatase tio2 nanotubes as an anode material for lithium-ion batteries. Electrochimica Acta 2007, 52, (28), 8044-8047.
[480] Gao, X. P. and Yang, H. X., Multi-electron reaction materials for high energy density batteries. Energy & Environmental Science 2010, 3, (2), 174-189.
[481] Li, Q. J., Zhang, J. W., Liu, B. B., Li, M., Liu, R., Li, X. L., Ma, H. L., Yu, S. D., Wang, L., Zou, Y. G., Li, Z. P., Zou, B., Cui, T. and Zou, G. T., Synthesis of high-density nanocavities inside tio2-b nanoribbons and their enhanced electrochemical lithium storage properties. Inorganic Chemistry 2008, 47, (21), 9870-9873.
[482] Zhang, H., Li, G. R., An, L. P., Yan, T. Y., Gao, X. P. and Zhu, H. Y., Electrochemical lithium storage of titanate and titania nanotubes and nanorods. Journal of Physical Chemistry C 2007, 111, (16), 6143-6148.
[483] Lindsay, M. J., Blackford, M. G., Attard, D. J., Luca, V., Skyllas-Kazacos, M. and Griffith, C. S., Anodic titania films as anode materials for lithium ion batteries. Electrochimica Acta 2007, 52, (23), 6401-6411.
[484] Das, S. K., Darmakolla, S. and Bhattacharyya, A. J., High lithium storage in micrometre sized mesoporous spherical self-assembly of anatase titania nanospheres and carbon. Journal of Materials Chemistry 2010, 20, (8), 1600-1606.
[485] Subramanian, V., Karki, A., Gnanasekar, K. I., Eddy, F. P. and Rambabu, B., Nanocrystalline tio2 (anatase) for li-ion batteries. Journal of Power Sources 2006, 159, (1), 186-192.
[486] Tokumitsu, K., Fujimoto, H., Mabuchi, A. and Kasuh, T., High capacity carbon anode for li-ion battery - a theoretical explanation. Carbon 1999, 37, (10), 1599-1605.
[487] Liu, Y., Li, K. X., Wang, J. L., Sun, G. H. and Sun, C. G., Preparation of spherical activated carbon with hierarchical porous texture. Journal of Materials Science 2009, 44, (17), 4750-4753.
[488] Fujimoto, H., Development of efficient carbon anode material for a high-power and long-life lithium ion battery. Journal of Power Sources 2010, 195, (15), 5019-5024.
[489] Cheng, F., Tao, Z., Liang, J. and Chen, J., Template-directed materials for rechargeable lithium-ion batteries. Chemistry of Materials 2008, 20, (3), 667-681.
[490] Palacin, M. R., Recent advances in rechargeable battery materials: A chemist's perspective. Chem Soc Rev 2009, 38, (9), 2565-2575.
[491] Sushko, M. L., Rosso, K. M. and Liu, J., Mechanism of li(+)/electron conductivity in rutile and anatase tio(2) nanoparticles. Journal of Physical Chemistry C 2010, 114, (47), 20277-20283.
[492] Xu, J. W., Wang, Y. F., Li, Z. H. and Zhang, W., Preparation and electrochemical properties of carbon-doped tio2 nanotubes as an anode material for lithium-ion batteries. Journal of Power Sources 2008, 175, (2), 903-908.
[493] Wu, Y. N., Li, F. T., Zhu, W., Cui, J. C., Tao, C. A., Lin, C. X., Hannam, P. M. and Li, G. T., Metal-organic frameworks with a three-dimensional ordered macroporous structure: Dynamic photonic materials. Angewandte Chemie-International Edition 2011, 50, (52), 12518-12522.
[494] Xue, C. F., Zhang, F., Wu, L. M. and Zhao, D. Y., Vapor assisted "In situ" Transformation of mesoporous carbon-silica composite for hierarchically porous zeolites. Microporous and Mesoporous Materials 2012, 151, 495-500.
[495] Dimesso, L., Forster, C., Jaegermann, W., Khanderi, J. P., Tempel, H., Popp, A., Engstler, J., Schneider, J. J., Sarapulova, A., Mikhailova, D., Schmitt, L. A., Oswald, S. and Ehrenberg, H., Developments in nanostructured limpo4 (m = fe, co, ni, mn) composites based on three dimensional carbon architecture. Chemical Society Reviews 2012, 41, (15), 5068-5080.