研究生: |
梁馨宜 Hsing-Yi Liang |
---|---|
論文名稱: |
電晶體通道寬度對低溫複晶矽薄膜元件可靠度影響之研究 Study of Channel-width-dependent Reliability Behavior of LTPS TFTs |
指導教授: |
金雅琴
Ya-Chin King 林崇榮 Chrong-Jung Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 低溫複晶矽薄膜 、可靠度 |
外文關鍵詞: | LTPS, TFT, reliability |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
循序性側向結晶技術能有效增大複晶矽的晶粒尺寸及控制晶粒邊界的位置,以提升低溫複晶矽薄膜電晶體的性能。然而,由於循序性側向結晶和一般雷射結晶技術,所成長之晶粒型態不同,循序性側向結晶製程形成與通道長度方向平行之晶粒邊界,將影響元件之可靠度。本論文將探討hot carrier stress對於循序性側向結晶技術之複晶矽薄膜電晶體所造成的影響。由實驗結果顯示,經stress作用後,元件特性的衰退現象和其通道寬度有關。針對此結果,本篇論文提出一全新的衰退機制及電路模型來模擬其衰退行為,以充分預估元件特性在電路操作下的變化。
Sequential lateral solidification (SLS) technology developed for crystallizing amorphous Si enlarges grain size and controls the position of grain boundaries effectively. However, thin-film transistors made by SLS suffer reliability issues possibly due to the innate sub-grain boundaries parallel to the drain current direction as a result of this unique solidification process. In this thesis, we observed channel-width-dependent degradation on these devices after hot carrier stress. A degradation model was proposed and verified by comparing the measured characteristic with the simulated behavior on the proposed sub-circuit, which successfully explains the degraded transistor behavior and its width dependence.
[1] I.W. Wu, “Low temperature poly-Si technology for AMLCDs,” AM-LCD, pp. 7-10, 1995.
[2] F. Hayashi, et. al., “A high performance polysilicon TFT sing RTA and plasma hydrogenation applicable to highly stable SRAMs of 16Mbit and beyond,” in Symp. On VLSI Technology, pp.36-37, 1992.
[3] J.H. Lee, et. al., “A new poly-Si TFT current-mirror pixel for Active Matrix Organic Light Emitting Diode,” EEE Electron Device Lett., vol. 27, no.10, pp. 830-833, 2006.
[4] T. Noma, et. al.,“Crystal forms by solid-state recrystallization of amorphous Si films on SiO2,” Appl. Phys. Lett., vol. 59, no. 6, pp.653-655, 1991.
[5] S. W. Lee, et. al.,“Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, no. 4, pp. 160-162, 1996.
[6] C. Hayzelden and J. L. Batstone, “Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films,” J. Appl. Phys., vol. 73, no.12, pp. 8279-8289, 1993.
[7] Alain C. K. Chan, et. al., “Effects of dopants on the electrical behavior of grain boundary in metal-induced crystallized polysilicon film,” IEEE, Trans. Electron Devices, vol. 52, no. 8, pp.1917-1919, 2005.
[8] T. Sameshima, et. al., “XeCl excimer laser annealing used to fabricate poly-Si TFT’s,” Jpn. J. Appl. Phys. vol. 28, no. 10, pp.1789-1793, 1989.
[9] T. Sameshima, et. al., “XeCl excimer laser annealing used in the fabrication of poly-Si TFT’s,” IEEE Electron Device Lett., vol. 7, no. 5, pp. 276-278, 1986.
[10] J. S. Im, et. al., “On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films,” Appl. Phys. Lett., vol. 64, no. 17, pp.2303-2305, 1994.
[11] J. S. Im, et. al., “Sequential lateral solidification of thin silicon films on SiO2,” Appl. Phys. Lett., vol. 69, no. 19, pp.2864-2866, 1996.
[12]M. A. Crowder, et. al., “Sequential lateral solidification processing for polycrystalline Si TFTs” IEEE, Trans. Electron Devices, vol. 51, no. 4, pp.560-568, 2004.
[13] M. A. Crowder, et. al., “Low-temperature single-crystal Si TFT’s fabricated on Si films processed via sequential lateral solidification,” IEEE Electron Device Lett., vol. 19, no. 8, pp. 306-308, 1998.
[14] G. A. Bhat, et. al., “Effects of longitudinal grain boundaries on the performance of MILC-TFT’s,” IEEE Electron Device Lett., vol. 20, no. 2, pp. 97-99, 1999.
[15] K. M. Chang, et. al., “Anomalous variations of off-state leakage current in poly-Si TFT under static stress,” IEEE Electron Device Lett., vol. 23, no. 5, pp. 255-257, 2002.
[16] C. A. Dimitriadis, et. al., “Effect of grain boundaries on hot-carrier induced degradation in large grain polysilicon thin-film transistors,” Solid-State Electronics, 44, pp.2045-2051, 2000.
[17] F. V. Farmakis s, et. al., “Anomalous turn-on voltage degradation during hot-carrier stress in polycrystalline silicon thin-film transistors,” IEEE Electron Device Lett., vol. 22, no. 2, pp. 74-76, 2001.
[18] K. M. Chang, et. al., “Enhanced degradation in polycrystalline silicon thin-film transistors under dynamic hot-carrier stress,” IEEE Electron Device Lett., vol. 22, no. 10, pp. 475-477, 2001
[19] Y. Uraoka, et. al., “Hot carrier effects in low-temperature polysilicon thin-film transistors,” Jpn. J. Appl. Phys. vol. 40, Part 1, no. 4B, pp.2833-2836, 2001.
[20] T. Yoshida, et. al., “Grain-boundary related hot carrier degradation mechanism in low-temperature polycrystalline silicon thin-film transistors,” Jpn. J. Appl. Phys. vol. 42, Part 1, no. 4B, pp.1999-2003, 2003.
[21]鍾元鴻, “Analysis on degradation mechanism and development of novel high performance device structures for low temperature polycrystalline silicon thin film transistors,” 交通大學電子所, 博士論文, 2002
[22] M. Kimura, et. al., “Current density enhancement at active layer edges in polycrystalline silicon thin-film transistors,” Jpn. J. Appl. Phys. vol. 40, Part 2, no. 1A/B, pp.L26-L28, 2001.
[23] W. Y. Huang, et. al., “Electrical characteristics study of edgeless structure on P-type low temperature poly-Si TFT,” AM-LCD, pp. 159-162, 2001.
[24] W. C. Chan, et. al., “The effects of grain boundaries in the electrical characteristics of large grain polycrystalline thin-film transistors,” IEEE, Trans. Electron Devices, vol. 49, no. 8, pp.1384-1391, 2002.
[25] Star-Hspice Manual, Release 2001.2, Avant! Corporation, 2001, ch.22, pp.182
[26] M. D. Jacunski, et. al., “A short-channel DC SPICE model for polysilicon thin-film transistors including temperature effects,” IEEE, Trans. Electron Devices, vol. 46, no. 6, pp.1146-1158, 1999.