簡易檢索 / 詳目顯示

研究生: 郭憲昌
Guo, Xian-Chang
論文名稱: 智慧電網可觀性之最佳配置演算法
Optimization Algorithms for Observability Configurations in Modern Smart Grids
指導教授: 廖崇碩
Liao, Chung-Shou
朱家齊
Chu, Chia-Chi
口試委員: 林義貴
Lin, Yi-Gui
林春成
Lin, Chun-Cheng
吳建瑋
Wu, Jian-wei
侯建良
Hou, Jian-liang
學位類別: 博士
Doctor
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 97
中文關鍵詞: 智慧電網可觀性配置最佳化向量量測單元
外文關鍵詞: Smart Grid, Observability Configuration, Optimization, PMU
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於尖峰用電的需求不斷攀升,以及環保意識抬頭,再生能源
    的比例逐漸提高,使得電力網路如何能夠更有智慧. 更有效率的運轉. 調度
    之需求已迫在眉睫。自從1990 年代起,相量量測單元(phasor measurement
    unit,PMU) 的問世,其高速的資料取樣速率以及透過GPS 同步,使得即
    時監控電力網路成為可能。這些相量量測單元帶來的大數據啟發了許多廣
    域量測. 保護與控制(wide area monitoring protection and control,WAMPAC)
    等題目的探討; 而其中,電力網路的可觀性(observability) 更是實現智慧電
    網的重要基石。本論文將探討如何以最符合經濟效益的可觀性配置,並
    且同時滿足通訊上. 拓樸上等等的限制條件,如在電力領域當中被廣泛討
    論的最佳化相量量測單元佈建問題(optimal PMU placement,OPP),此一
    NPcomplete
    的組合最佳化問題。
    在本論文中,將探討過去研究最佳化相量量測單元佈建問題的三種主流
    演算法:(1) 以圖形理論文基礎的演算法,(2) 人工智慧演算法以及(3) 數學
    規劃法。這三種演算法分別各有其優缺點與適合求解的最佳化相量量測單
    元佈建問題模型,本論文除了介紹這三種演算法以外,更將結合圖形理論
    文基礎的演算法與人工智慧演算法的優點,提出一混合型的二階段演算法,
    利用圖形法求得的近似解作為人工智慧演算法的初始解,可大幅節省計算
    時間與疊代次數;此外,本論文提出一理論分析以佐證此演算法確實可以
    有效得到最佳解。在模型的開發上,過去絕大多數的模型中忽略了無限制
    可觀性傳遞的問題,在這些可觀性相依的特性之下,無限制的可觀性傳遞,
    將使得系統高度暴露於不可觀的風險之下; 因此,本論文提出了一個全新的
    模型,於此模型當中,一樣是求解最符合經濟效益的可觀性配置問題,但同時加入了有限的可觀性傳遞的條件,實驗結果顯示可以有效的提升系統
    的可觀性。在分散式能源是未來智慧電網的趨勢的潮流下,我們也探討如
    何以樹分解(tree decomposition) 電力網路,並且應用動態規劃演算法於此樹
    狀結構的樹分解來求解最佳化智慧電網可觀性配置問題。


    With increasing global concerns regarding energy management, the concept of
    the smart grid has become a particularly important interdisciplinary research topic.
    In order to continually monitor a power utility system and efficiently observe all
    of the states of electric nodes and branches on a smart grid, placing phasor measurement
    units (PMUs) at selected nodes on the grid can monitor the operation
    conditions of the entire power grid. The problem of monitoring a power grid with
    minimum installation costs of PMUs can be transformed into the optimal PMU
    placement (OPP) problem where the system is monitored under power observation
    rules. The combinatorial optimization problem has been shown to be NPcomplete.
    In this work, three algorithmic approaches: graphtheoretic
    approaches,
    metaheuristic
    algorithms and mathematical programming (MP) are proposed and
    discussed.
    A new hybrid twophase
    algorithm combining both merits of graphtheoretic
    approaches and metaheuristic
    algorithms is first proposed for the classical OPP
    problem, in which the objective is to simultaneously minimize the number of PMUs
    and ensure the complete observability of the whole power grid. The numerical
    studies on various IEEE power test systems demonstrate the superior performance
    of the proposed algorithm in regard to computational time and solution quality.
    When the power grid encounters unexpected contingencies, conventional OPP formulations
    with unlimited observability propagations may increase the risk of losing
    the observability. In order to overcome this difficulty, a new observabilityenhanced
    OPP formulation with considering bounded observability propagation constraints is proposed in by introducing the concept of observability propagation
    depth (OPD). The OPD can characterize the depth of observability propagations applied
    to observe a bus from its nearest PMU measurements. To further explore the
    robustness of measurement systems under severe contingencies, a bilevel optimization
    framework with a linearized probabilistic observability model is proposed. In
    order to accommodate the distributed control architecture for the Distributed energy
    resource (DER), another twophase
    solution algorithm is also proposed by
    exploring sparsity of largescale
    power grids and observability rules derived from
    power engineering practices. In the first phase, a tree decomposition techniques is
    proposed to decompose the original graph topology of the power grid into a treelike
    structure and a dynamic programming (DP) approach is applied to the tree in a
    bottomup
    manner in the second phase. One advantage of the proposed algorithm
    is that it seems to be more flexible since some buses can be recommended to install
    PMUs from topology characteristics of the power grid. These proposed algorithms
    have shown their effectiveness from both the theoretical and practical perspectives.

    Abstract ii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 The classic OPP problem . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Observabilityenhanced OPP problems . . . . . . . . . . . . . . . . . 5 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Preliminary 11 2.1 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Topological Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 The Classic OPP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Direct PMU Measurements . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Observability Propagations . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Graphtheoretic Approaches 16 3.1 Observation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 The Power Domination Problem . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 The Ideal OPP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Graphbased Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5.1 Case Studies of the Practical Model . . . . . . . . . . . . . . . . . . . 21 3.5.2 Case Studies of the Ideal Model . . . . . . . . . . . . . . . . . . . . . 21 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 MetaHeuristic Algorithms 24 4.1 Artificial Bee Colony Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 The ABC Algorithm for the Classic OPP problem . . . . . . . . . . . . . . . . 25 4.2.1 Solution Representations . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.2 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.3 Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.1 Results of the Hybrid twophase Algorithm . . . . . . . . . . . . . . . 28 4.3.2 Theoretical Analysis of Lower Bounds . . . . . . . . . . . . . . . . . 32 4.3.3 Results of the Singlephase with ABC algorithm only . . . . . . . . . . 34 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5 Mathematical Programming 37 5.1 The Classic OPP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1.1 Direct PMU measurements . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1.2 PMU Channel Capacity Limits . . . . . . . . . . . . . . . . . . . . . . 37 5.1.3 Observability Propagations . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2 ObservabilityEnhancing OPP Problems . . . . . . . . . . . . . . . . . . . . . 40 5.3 The OPP Problem with limited Observability Propagations . . . . . . . . . . . 41 5.3.1 The Concept of Observability Propagation Depth . . . . . . . . . . . . 42 5.3.2 Observability Enhancement with Predefined Bounded OPDs . . . . . 46 5.4 Bilevel OPP Problem under a Probabilistic Framework . . . . . . . . . . . . . 46 5.4.1 Probabilistic Formulation of the Contingency Constraints . . . . . . . . 46 5.4.2 Bilevel Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.4.3 SingleLevel Transformation . . . . . . . . . . . . . . . . . . . . . . . 51 5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.5.1 Results of the OPDs under given PMU configurations . . . . . . . . . 53 5.5.2 Results of the OPDbased OPP on IEEE Test Systems . . . . . . . . . 54 5.5.3 Results of the OPDbased OPP with the Probabilistic Framework . . . 59 6 Observability Configurations in decentralized architecture 72 6.1 Reformulation by GraphTheoretic Approaches . . . . . . . . . . . . . . . . . 73 6.2 Decomposition on a Power Network . . . . . . . . . . . . . . . . . . . . . . . 75 6.2.1 Tree Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2.2 Nice Tree Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3 Dynamic Programming on a Nice Tree Decomposition . . . . . . . . . . . . . 80 6.3.1 Leaf Bag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.2 Introduce Bag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.3 Forget Bag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.4 Join Bag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.4.1 Results of the Proposed Decomposition Technique . . . . . . . . . . . 83 6.4.2 Results of OPP problems in the Proposed DP Approach . . . . . . . . 84 7 Conclusions 89 References 91

    [1] A. Aazami, ”Domination in Graphs with Bounded Propagation: Algorithms, Formulation,
    and Hardness Results”, J. Comb. Opt., vol. 19, no. 4, pp. 429456,
    2010.
    [2] A. Aazami and M. D. Stilp, ”Approximation Algorithms and Hardness for Domination
    with Propagation”, SIAM J. Discrete Math., 23(3), 1382–1399, 2009.
    [3] T. A. Alexopoulos, N. M. Manousakis, and G. N. Korres, ”Fault location observability
    using phasor measurements units via semidefinite programming”, IEEE Access, vol. 4,
    pp. 5187–5195, 2016.
    [4] F. Aminifar, M. FotuhiFiruzabad,
    A. Safdarian, A. Davoudi and M. Shahidehpour, ”Synchrophasor
    measurement technology in power systems: panorama and stateoftheart”,
    IEEE Access, vol. 2, pp. 16071628,
    2015.
    [5] F. Aminifar, M. FotuhiFiruzabad,
    A. Safdarian, and M. Shahidehpour, ”Observability of
    hybrid AC/DC power systems with variablecost
    PMUs,” IEEE Trans. Power Del., vol.
    29, no. 1, pp. 345352,
    2014.
    [6] F. Aminifar, M. FotuhiFiruzabad,
    M. Shahidehpour and A. Khodaei, ”Probabilistic multistage
    PMU placement in electric power systems”, IEEE Trans. Power Del., vol. 26, no. 2,
    pp. 841–849, 2011.
    [7] F. Aminifar, M. FotuhiFiruzabad,
    M. Shahidehpour, A. Khodaei, ”Observability enhancement
    by optimal PMU placement considering random power system outages”, Energy
    Syst., vol. 2, 2011.
    [8] F. Aminifar, A. Khodaei, M. FotuhiFiruzabad,
    M. Shahidepour, ”ContingencyConstrained
    PMU Placement in Power Networks”, IEEE Trans. on Power Systems,
    vol. 25, no. 1, 516–523, 2010.
    [9] F. Aminifar, C. Lucas, A. Khodaei and M. FotuhiFiruzabad,
    ”Optimal Placement of Phasor
    Measurement Units Using Immunity Genetic Algorithm”, IEEE Trans. on Power Delivery,
    24(3), 1014–1020, 2009.
    [10] G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, I. Kamwa, P. Kundur, N. Martins,
    J. Paserba, P. Pourbeik, J. SanchezGasca,
    R. Schulz, A. Stankovic, C. Taylor and
    V. Vittal, ”Causes of the 2003 Major Grid Blackouts in North America and Europe, and
    Recommended Means to Improve System Dynamic Performance”, IEEE Trans. on Power
    Systems, vol. 20, no. 4, pp. 1922–1928, Nov. 2005.
    [11] B. Appasani, and D. K. Mohanta, ”CoOptimal
    Placement of PMUs and Their Communication
    Infrastructure for Minimization of Propagation Delay in the WAMS”, IEEE Trans.
    Ind. Inform., vol. 14, no.5 pp. 2120–2132, 2018.
    [12] S. Azizi, A. S. Dobakhshari, S. A. Sarmadi, and A. M. Ranjbar, ”Optimal PMU Placement
    by an Equivalent Linear Formulation for Exhaustive Search”, IEEE Trans. Smart Grid, vol.
    3, no. 1, pp. 174–182, Mar. 2012.
    [13] T. L. Baldwin, L. Mili, M. B. Boisen Jr. and R. Adapa, ”Power system observability with
    minimal phasor measurement placement”, IEEE Trans. on Power System, 8(2), 707–715,
    1993.
    [14] B. Basturk and D. Karaboga, ”An artificial bee colony (abc) algorithm for numeric function
    optimization”, Proc. IEEE Swarm Intelligence Symp. Indianapolis Indiana, 2006.
    [15] E. E. Bernabeu, J. S. Thorp and V. A. Centeno, ”Methodology for a security/dependability
    adaptive protection scheme based on data mining”, IEEE Trans. Power Del., vol. 27, no.
    1, pp. 104111,
    2012.
    [16] J. Bertsch, C. Carnal, D. Karlsson, J. Cdaniel and K. Vu, ”Widearea
    protection and power
    system utilization”, Proc. IEEE, 93(5), pp. 997–1003, 2005.
    [17] D. J. Brueni and L. S. Heath, ”The PMU placement problem”, SIAM J. Discrete Math.,
    19(3), 744–761, 2005.
    [18] S. Chakrabarti and E. Kyriakides, ”Optimal placement of phasor measurement units for
    power system observability”, IEEE Trans. Power Syst., 23(3), 1433–1440, 2008.
    [19] S. Chakrabarti, E. Kyriakides and D. G. Eliades, ”Placement of Synchronized Measurements
    for Power System Observability”, IEEE Trans. on Power Delivery, 24(1), 12–19,
    2009.
    [20] M. L. Chan, W. H. Crouch, Jr., ”An integrated load management, distribution automation
    and distribution SCADA system for old dominion electric cooperative”, IEEE Trans. on
    Power Delivery, Vol. 5, No. 1, pp. 384–390, 1990.
    [21] J. Chen and A. Abur, ”Placement of PMUs to enable bad data detection in state estimation,”
    IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1608–1615, 2006.
    [22] I. Contreras, E. Fernndez and A. Marn, ”The tree of hubs location problem”, European
    Journal of Operational Research, 202(2), 390–400, 2010.
    [23] B. Daehyun, G. Michailidis and M. Devetsikiotis, ”Towards improved scalability in smart
    grid modeling: Simplifying generator dynamics analysis via spectral graph sparsification”,
    Proc. 2011 IEEE First International Workshop on Smart Grid Modeling and Simulation
    (SGMS), 2011.
    [24] J. E. Dagle, ”North american synchrophasor initiative”, Proc. of the 41th Hawaii Int. Conf.
    on System Sciences, 2008.
    [25] I. Dobson, ”Voltages across an area of a network”, IEEE Trans. on Power Systems, vol.
    27, no. 2, pp. 9931002,
    2012.
    [26] M. Donnelly, M. Ingram and J. R. Carroll, ”Eastern Interconnection Phasor Project”, Proc.
    of the 39th Hawaii Int. Conf. on System Sciences, 336–342, 2006.
    [27] D. Dua, S. Dambhare, R. K. Gajbhiye and S. A. Soman, ”Optimal multistage scheduling
    of PMU placement: An ILP approach”, IEEE Trans. Power Delivery, 23(4), 1812–1820,
    2008.
    [28] R. Emami and A. Abur, ”Robust Measurement Design by Placing Synchronized Phasor
    Measurements on Network Branches”, IEEE Trans. Power Syst., vol. 25, no. 1, pp. 38–43,
    2010.
    [29] M. Esmaili, K. Gharani and H. A. Shayanfar, ”Redundant observability PMU placement in
    the presence of flow measurements considering contingencies,” IEEE Trans. Power Syst.,
    vol. 28, no. 4, pp. 3765–3773, 2013.
    [30] European Commission. ”European technology platform SmartGrids: vision and strategy
    for Europe’s Electricity Networks of the Future”, available: www.smartgrids.eu
    [31] GAMS (General Algebraic Modeling System) Software Package. [Online]. Available:
    http://www.gams.com
    [32] A. Ghasemkhani, H. Monsef, A. RahimiKian
    and A. AnvariMoghaddam,
    ”Optimal Design
    of a Wide Area Measurement System for Improvement of Power Network Monitoring
    Using a Dynamic Multiobjective Shortest Path Algorithm”, IEEE Syst. J., vol. 11, no. 4,
    pp. 23032314,
    Dec. 2017.
    [33] K. H. Gjermundr, D. E. Bakken, C. H. Hauser and A. Bose, ”GridStat: A flexible QoSmanaged
    data dissemination framework for the power grid”, IEEE Trans. Power Del.,
    24(1), 136–143, 2009.
    [34] M. Göl and A. Abur, ”A hybrid state estimator for systems with limited number of PMUs”
    IEEE trans. Power Syst., vol. 30, no. 3, pp. 1511–1517, 2015.
    [35] F. R. Gomez, A. D. Rajapakse, U. D. Annakkage and I. T. Fernando, ”Support vector
    machinebased
    algorithm for postfault
    transient stability status prediction using synchronized
    measurements,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1474–1483, 2011.
    [36] B. Gou, ”Generalized integer linear programming formulation for optimal PMU placement,”
    IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1099–1104, 2008.
    [37] B. Gou, ”Optimal placement of PMUs by integer linear programming,” IEEE Trans. Power
    Syst., vol. 23, no. 3, pp. 1525–1526, 2008.
    [38] B. Gou and A. Abur, ”A direct numerical method for observability analysis”, IEEE Trans.
    Power Syst., vol. 15, no. 2, pp. 625630,
    2000.
    [39] J. Guo, R. Niedermeier, and D. Raible, “Improved Algorithms and Complexity Results
    for Power Domination in Graphs,"Algorithmica, vol. 52, no. 2, pp. 177–202, 2008.
    [40] X. C. Guo, C. S. Liao, and C. C. Chu, ”Optimal PMU placements under propagation depth
    constraints by mixed integer linear programming”, Proc. 7th IEEE Int. Conf. Smart Grid
    Commun. (SmartGridComm), 2016.
    [41] X. C. Guo, C. S. Liao, and C. C. Chu, ”Enhanced Optimal PMU Placements Limited
    Observability Propagations”, IEEE Access, vol. 8, pp.22515–22524, 2020.
    [42] I. Gurobi Optimization, 2012[Online]. Gurobi Optimizer reference manual. Avaialable:
    http://www.gurobi.com.
    [43] M. Hajian, A. M. Ranjbar, T. Amraee and B. Mozafari, ”Optimal placement of PMUs to
    maintain network observability using a modified BPSO algorithm”, Int. J. Elec. Power
    Energy Syst. vol. 33, no. 1, pp. 28–34, 2011.
    [44] T. W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, and M.A. Henning, ”Domination in
    graphs applied to electric power networks”, SIAM J. Discrete Math., vol. 15, no. 4, pp.
    519–529, 2002.
    [45] L. Huang, Y. Sun, J. Xu, W. Gao, J. Zhang and Z. Wu, ”Optimal PMU placement considering
    controlled islanding of power system”, IEEE Trans. Power Syst., vol. 29, no. 2, pp.
    742–755, Mar. 2014.
    [46] I. Kamwa, R. Grondin and Y. Hebert, ”Widearea
    measurement based stabilizing control
    of large power systemsa
    decentralized/hierarchical approach,” IEEE Trans. Power Syst.,
    vol. 16, no. 1, pp. 136–153, 2001.
    [47] P. Kansal and A. Bose, ”Bandwidth and latency requirements for smart transmission grid
    applications”, IEEE Trans. on Smart Grid, vol. 3, no. 3, pp. 13441352,
    2012.
    [48] D. Karaboga and B. Akay, ”A Comparative Study of Artificial Bee Colony Algorithm”,
    Applied Mathematics and Computation, 108–132, 2009.
    [49] R. Kateb, P. Akaber, M. Tushar, A. ALBarakati,
    M. Debbabi, and C. Assi, ”Enhancing
    WAMS communication network against delay attacks”, IEEE Trans. Smart Grid, to be
    published.
    [50] R. Kavasseri and S. K. Srinivasan, ”Joint placement of phasor and power flow measurements
    for observability of power systems”, IEEE Trans. on Power Systems, vol. 26, no. 4,
    pp. 1929–
    1936, 2011.
    [51] V. Kekatos, G. B. Giannakis and B. Wollenberg, ”Optimal Placement of Phasor Measurement
    Units via Convex Relaxation”, IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1521–
    1530, 2012.
    [52] K. G. Khajeh, E. Bashar, A. M. Rad, and G. B. Gharehpetian ”Integrated model considering
    effects of zero injection buses and conventional measurements on optimal PMU
    placement”, IEEE Trans. Smart Grid, vol, 8, no. 2, pp. 1006–1013, 2017.
    [53] V. Khiabani, O. P. Yadav and R. Kavesseri, ”Reliabilitybased
    placement of phasor measurement
    units in power systems”, J. Risk Reliab., vol. 226, no. 1, pp.109–117, 2012.
    [54] J. Kneis, D. Molle, S. Richter and P. Rossmanith, ”Parameterized power domination complexity”,
    Inform. Proc. Letters 98(4), 145–149, 2006.
    [55] A. Konak, ”Network design problem with relays: a genetic algorithm with a pathbased
    crossover and a set covering formulation”, European Journal of Operational Research,
    218(3), 829–837, 2012.
    [56] M. Korkali and A. Abur, ”Placement of PMUs with channel limits”, Proc. IEEE Power
    Eng. Soc. General Meeting, 2009.
    [57] M. Korkali and A. Abur, ”Impact of network sparsity on strategic placement of phasor
    measurement units with fixed channel capacity,” Proc. IEEE Int. Symp. on Circuits and
    Syst., pp. 34453448,
    2010.
    [58] G. N. Korres, N. M. Manousakis, T. C. Xygkis, and J. Löfberg, ”Optimal phasor measurement
    unit placement for numerical observability in the presence of conventional measurements
    using semidefinite programming,” IET Gener. Transm. Distrib., vol. 9, no. 15, pp.
    2427–2436, 2015.
    [59] N. C. Koutsoukis, N. M. Manousakis, P. S. Georgilakis, G. N. Korres, ”Numerical observability
    method for optimal phasor measurement units placement using recursive Tabu
    search method”, IET Generat. Transmiss. Distrib., vol. 7, no. 4, pp. 347356,
    2013.
    [60] G.R. Krumpholz, K.A. Clements, and P.W. Davis, ”Power System Observability: A Practical
    Algorithm Using Network Topology”, IEEE Trans. on Power App. and Syst., vol.
    PAS99,
    pp. 15341542,
    1980.
    [61] W. T. Li, C. K. Wen, J. C. Chen, K. K. Wong, J. H. Teng, and C. Yuen, ”Location identification
    of power line outages using PMU measurements with bad data”, IEEE Trans. on
    Power Systems, vol. 31, no. 5, pp. 3624 3635,
    2015.
    [62] C. S. Liao, ”Power domination with bounded time constraints” Journal of Combinatorial
    Optimization, vol. 31, pp. 725–742,
    2016.
    [63] C. S. Liao, T. J. Hsieh, X. C. Guo, J. H. Liu, and C. C. Chu, ”Hybrid search for the optimal
    PMU placement problem on a power grid”, Eur. J. Oper. Res., vol. 243, no. 3, pp.985–994,
    2015.
    [64] C. Lu, Z. Wang, M. Ma, R. Shen and Y. Yu, ”An Optimal PMU Placement With Reliable
    Zero Injection Observation”, IEEE Access, vol. 6, pp. 54417–54426, 2018.
    [65] T. K. Maji and P. Acharjee, ”A prioritybased
    multistage PMU installation approach for
    direct observability of all network buses”, IEEE Systems Journal, vol. pp, no. 99, pp. 1–9,
    2018.
    [66] N. M. Manousakis and G. N. Korres, ”A weighted least squares algorithm for optimal
    PMU placement”, IEEE Trans. Power Syst., vol. 28, no. 3, pp. 34993500,
    2013.
    [67] N. M. Manousakis, G. N. Korres and P. S. Georgilakis, ”Taxonomy of PMU placement
    methodologies”, IEEE Trans. Power Syst., vol. 27, no. 2, pp. 10701077,
    2012.
    [68] R. Marques , J. Rocha , S. Rafael and J. F. Martins ”Design and implementation of a
    reconfigurable remote laboratory, using oscilloscope/PLC network for WWW access”,
    IEEE Trans. Ind. Electron., vol. 55, no. 6, pp.2425–2432, 2008.
    [69] F. J. Martin, F. GarciaLagos,
    G. Joya and F. Sandoval, ”Genetic algorithms for optimal
    placement of phasor measurement units in electric networks”, IEEE Electronics Letters,
    39(19), 1403–1405, 2003.
    [70] S. M. Mazhari, H. Monsef, H. Lesani and A. Fereidunian, ”A MultiObjective
    PMU
    Placement Method Considering Measurement Redundancy and Observability Value Under
    Contingencies”, IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2136–2146, 2013.
    [71] B. Milosevic and M. Begovic, ”Nondominated sorting genetic algorithm for optimal phasor
    measurement placement”, IEEE Trans. on Power Systems, 18(1), 69–75, 2003.
    [72] M. NazariHeris
    and B. MohammadiIvatloo,
    ”Application of heuristic algorithms to optimal
    PMU placement in electric power systems: An updated review”, Renewable and
    Sust. Eng. Reviews, vol. 50, pp. 214–228, 2015.
    [73] M. NazariHeris
    and B. MohammadiIvatloo,
    ”Optimal placement of phasor measurement
    units to attain power system observability utilizing an upgraded binary harmony search
    algorithm”, Energy Systems, vol. 6, issue 2, pp. 201–220, 2015.
    [74] M. K. Neyestanaki and A. M. Ranjbar, ”An adaptive PMUbased
    wide area backup protection
    scheme for power transmission lines”, IEEE Trans. Smart Grid, vol. 6, no. 3, pp.
    15501559,
    May 2015.
    [75] R.F. Nuqui and A.G. Phadke, ”Phasor Measurement Unit Placement Techniques for Complete
    and Incomplete Observability”, IEEE Trans. Power Del., vol. 20, no. 4, pp. 2381–
    2388, 2005.
    [76] A. Pal, G. A. SanchezAyala,
    V. A. Centeno, and J. S. Thorp, ”A PMU placement scheme
    ensuring realtime
    monitoring of critical buses of the network”, IEEE Trans. Power Del.,
    vol. 29, no. 2, pp. 510517,
    2014.
    [77] C. Peng, H. Sun and J. Guo, ”Multiobjective
    optimal PMU placement using a nondominated
    sorting differential evolution algorithm”, Int. J. Elec. Power and Energy Systems,
    32(8), 886–892, 2010.
    [78] J. Peng, Y. Sun and H. F. Wang, ”Optimal PMU placement for full network observability
    using Tabu search algorithm”, Int. J. Elec. Power and Energy Systems, 28, 223–231, 2006.
    [79] A. G. Phadke, ”Synchronized phasor measurements in power systems”, IEEE Computer
    Applications in Power, vol. 6, no. 2, pp. 10–15, 1993.
    [80] A. G. Phadke and J.S. Thorp, ”Synchronized Phasor Measurements and Their Applications”,
    Springer, New York, 2008.
    [81] Power systems test case archive. [Online]. Available:
    http://www.ee.washington.edu/research/pstca/.
    [82] D. Raible and H. Fernau, ”An Exact Exponential Time Algorithm for Power Dominating
    Set”, Algorithmica, 63, 323–346, 2012.
    [83] C. Rakpenthai, S. Premrudeepreechacharn, S. Uatrongjit, and N. R. Watson, ”An optimal
    PMU placement method against measurement loss and branch outage,” IEEE Trans. on
    Power Del., vol. 22, no. 1, pp. 101–107, Jan. 2007.
    [84] Z. H. Rather, Z. Chen, P. Thogerson, P. Lund and B. Kirby, ”Realistic approach for phasor
    measurement unit placement: consideration of practical hidden costs”, IEEE Trans. Power
    Del., vol. 30, no. 1, pp. 315,
    Feb. 2015.
    [85] M. Sarailoo and N. Eva Wu, ”CostEffective
    Upgrade of PMU Networks for FaultTolerant
    Sensing”, IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3052–3063, 2018.
    [86] A. Sharma, S. C. Srivastava and S. Chakrabarti, ”An iterative multiarea state estimation
    approach using area slack bus adjustment”, IEEE Syst. J., vol. 10, no. 1, pp. 6977,
    2014.
    [87] K. Sun, S. Likhate, V. Vittal, V. S. Kolluri and S. Mandal, ”An online dynamic security
    assessment scheme using phasor measurements and decision trees”, IEEE Trans. Power
    Syst., vol. 22, no. 4, pp. 19351943,
    2007.
    [88] W. Y. Szeto, Y. Wu and S. C. Ho, ”An artificial bee colony algorithm for the capacitated
    vehicle routing problem”, European Journal of Operational Research, 215, 126–135, 2011.
    [89] V. Terzija, G. Valverde, D. Cai, P. Regulski, V. Madani, J. Fitch, S. Skok, M. M. Begovic,
    and A.G. Phadke, ”WideArea
    Monitoring, Protection, and Control of Future Electric
    Power Networks”, In Proceedings of the IEEE, vol. 99, no. 1, pp. 80–93, 2011.
    [90] B. Xu, and A. Abur, ”Observability analysis and measurement placement for systems with
    PMUs”, proc. IEEE Power Eng. Soc. Power Systems Conf. Expo., pp. 943946,
    2004.
    [91] M. Zhao, L. Kang and G. J. Chang, ”Power domination in graphs”, Discrete Math. 306(15),
    1812–1816, 2006.

    QR CODE