研究生: |
梁珮欣 Liang, Pei-Xin |
---|---|
論文名稱: |
多重範么之代數環面的上同調性質 Cohomological Properties of Multinorm-one Tori |
指導教授: |
余家富
Yu, Chia-Fu 魏福村 Wei, Fu-Tsun |
口試委員: |
謝銘倫
Hsieh, Ming-Lun 東聖甯 Tung, Shen-Ning |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 多重範么之代數環面 、玉川數 |
外文關鍵詞: | Multinorm-one tori, Tate-Shafarevich groups, Tamagawa numbers |
相關次數: | 點閱:25 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇文章中,我們研究了多重範數為一的代數環面之Tate-Shafarevich群$\Sha^1(k, T)$。我們建立了一些在同調群之間的基本映射並探討了它們之間的關係。利用這些性質和關係,我們得到了一些與$\Sha^1(k, T)$相關的結果,這些結果擴展了Bayer-Fluckiger,李庭諭以及Parimala在2019年合作文章中的部分工作,能夠對更一般的多重範數為一的代數環面進行討論。
In this paper we investigate the Tate-Shafarevich group $\Sha^1(k, T)$ of a multinorm-one torus $T$ over a global field $k$.
We establish a few fundamental functorial maps among cohomology groups and explore their relations. Using these properties and relations we obtain a few results of $\Sha^1(k, T)$ that extend some results of Bayer-Fluckiger--Lee--Parimala [Adv. in Math., 2019] to more general multinorm-one tori.
[1] E. Bayer-Fluckiger, T.-Y. Lee, and R. Parimala. Hasse principles for multinorm equations. Adv. Math., 356:106818, 35, 2019.
[2] Cyril Demarche and Dasheng Wei. Hasse principle and weak approximation for multinorm equations. Israel J. Math., 202(1):275–293, 2014.
[3] Serge Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1994.
[4] T-Y Lee. The Tate-Shafarevich groups of multinorm-one tori. Journal of Pure and Applied Algebra, 226(7):106906, 2022.
[5] Joseph Oesterlé. Nombres de Tamagawa et groupes unipotents en caractéristique p. Invent. Math., 78(1):13–88, 1984.
[6] Takashi Ono. On the Tamagawa number of algebraic tori. Ann. of Math. (2), 78:47–73, 1963.
[7] Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1979. Translated from the French by Marvin Jay Greenberg.