簡易檢索 / 詳目顯示

研究生: 馬家君
Maung Sein Lin
論文名稱: 以不同高寬比之陽極氧化鋁為模仁成長奈米鑽石針尖場發射特性之探討
Study on field emission characteristics of nano-diamond tips growth on AAO templates with different aspect ratios
指導教授: 蔡宏營
Tsai, Hung-Yin
口試委員: 郭桂林
Kuo, Kei-Lin
曾仕君
Tseng, Shih-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 117
中文關鍵詞: 場發射鑽石針尖陽極氧化鋁熱燈絲化學氣相沉積法
外文關鍵詞: Field emission, Diamond tips, AAO, HFCVD
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文摘要
    本研究主要以硬陽極氧化鋁之背部阻障層作為模板,利用熱燈絲化學氣相沉積法成長高均勻性之鑽石奈米針尖陣列,並藉由不同規格之模板,製作出不同密度之針尖間距,經由場發射測試後之特性,討論各種針尖密度、間距與高度的比值於場發射上的表現及場遮蔽效應之影響。在研究過程中以掃描式電子顯微鏡檢觀察測試片表面形貌、原子力顯微鏡量測試片針尖高度、拉曼光譜儀檢測鑽石特性及以場發射量測儀檢測鑽石針尖陣列場發射性質。
    研究中利用硬陽極氧化鋁之阻障層為模板,相較於以孔洞陣列製作的結構,不但高度與規則度更為一致,也較能形成針尖狀。研究中利用聚乙烯亞胺附著鑽石顆粒之輔助成核前處理法,製作三角錐形針尖,其平均尖端半徑約為15~27奈米,平均高度約為18~120奈米,平均最低針尖間距介於50~205奈米之間。
    本研究實驗參數之結果顯示,平均針尖間距為50 nm時,具有最佳的間距與高度比值2.8,除了具有最高發射點密度外,也最能避免場遮蔽效應的影響,經鑽石內摻入氮後,成功獲得本研究之最低起始電場2.4 V/μm及最大場發射電流密度2523 μA/cm2,也證實這種製作方法不但經濟便宜、簡單迅速,其在場發射性能的表現也極為優越。


    Abstract
    Patterned arrays of diamond nano-tips were grown on the back barrier side of an anodic aluminum oxide (AAO) template by hot-filament chemical vapor deposition (HFCVD) system. Hard anodization method was chosen to fabricate the AAO template of uniform structure arrays and nano diamond particles were adhered onto the AAO template by Polyethylenimine pretreatment to increase the nucleation density of diamond. Different specifications of the templates to produce different heights and pitches of the diamond nano-tips were fabricated. The surface morphology of specimen was observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quality and field emission properties of nano-tip diamonds were examined by Raman spectroscopy and field emission meter, respectively. The field emission properties of different heights and pitches of diamond nano-tips were discussed to confirm whether the screening effect existed or not in these kinds of diamond nano-tips structures. The tip radius of diamond nano-tips about 15 nm-27 nm, the average height about 18 nm-120 nm, and the average pitch-distance from 50 nm to 205 nm were obtained. The lowest turn-on field of 2.4 V/μm and the highest field emission current density of 2523 μA/cm2 can be obtained, respectively, for the case of the nitrogen doped diamond tips array with pitch-height ratio of 2.8. This kind of diamond nano-tips array seemed no field screening effect exist within these values of pitch-height ratio.

    目錄 論文摘要 I Abstract II 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 5 第二章 文獻回顧 7 2.1場發射效應 7 2.1.1基本場發射理論 7 2.1.2發射端尺寸效應 9 2.1.3場發射遮蔽效應 12 2.2鑽石場發射針尖陣列 18 2.2.1直接蝕刻法 18 2.2.2鑽石塗層法 21 2.2.3模造法 23 2.3陽極氧化鋁 26 2.3.1陽極氧化鋁結構 26 2.3.2陽極氧化鋁形成機制 27 2.3.3陽極氧化鋁結構製作 30 2.3.4二次陽極處理 32 2.3.5硬陽極處理 33 2.4化學氣相沉積鑽石薄膜法 39 2.4.1人工合成鑽石的發展歷史簡介 39 2.4.2 化學氣相沉積鑽石薄膜法 41 2.4.3 化學氣相沉積法的種類與簡介 43 2.5輔助鑽石成核方法 46 第三章 實驗儀器與製程 50 3.1 實驗流程規劃 50 3.2 實驗藥品與氣體 51 3.3 硬陽極氧化鋁模板製作 52 3.3.1 硬陽極處理設備 52 3.3.2 退火處理 54 3.3.3 電拋光處理 54 3.3.4 實驗步驟 56 3.4 鑽石顆粒輔助成核﹙PEI附著法﹚ 58 3.5 鑽石薄膜沉積 60 3.5.1 熱燈絲化學氣相沉積設備( HFCVD ) 60 3.5.2 燈絲碳化 63 3.5.3 鑽石薄膜沉積實驗步驟 65 3.6脫模處理 66 3.7 試片檢測儀器 67 3.7.1 掃描電子顯微鏡 67 3.7.2 拉曼光譜儀 68 3.7.3 場發射量測儀 70 第四章 硬陽極氧化鋁實驗 72 4.1 硬陽極處理參數規劃 72 4.2 草酸硬陽極處理 74 4.3 硫酸硬陽極處理 80 4.4阻障層結構之分析 83 第五章 鑽石針尖陣列製作與討論 87 5.1 鑽石成核前處理 87 5.2 成長鑽石針尖陣列 88 5.3鑽石針尖間距及高度比分析 99 5.4 鑽石針尖陣列場發射特性分析 105 第六章 結論 112 參考文獻 113   表目錄 表1-1、鑽石之材料特性表 4 表2-1、0.3 M草酸之一般陽極處理(MA)與硬陽極處理(HA)之比較表 38 表2-2、各式化學氣相沉積法比較表 45 表3-1、實驗藥品與氣體表 51 表3-2、碳系材料拉曼光譜特徵峰值表 69 表4-1、0.5 M草酸定電流硬陽極處理參數表 77 表4-2、0.5 M硫酸定電壓硬陽極處理參數表 81 表5-1、以氫氣及甲烷成長鑽石於不同模板參數表 89 表5-2、0.5 M硫酸及草酸硬陽極處理模板參數之鑽石針尖間距與高度比值表 101 表5-3、以氮氣、氫氣及甲烷成長鑽石於不同模板參數表 102 表5-4、場發射量測設定參數表 106   圖目錄 圖2-1、(a)未施加電場;(b)施加電場後產生場發射示意圖 8 圖2-2、各種形狀場發射端F-N模擬圖(a)雙曲面;(b)錐形;(c)平面。虛線為傳統F-N模擬曲線 11 圖2-3、雙曲面針尖,在定電壓30 V,兩極間距20 nm下,電流密度隨針尖半徑變化之圖 11 圖2-4、添加不同濃度Fe(NO3)3.9H2O所形成的奈米碳管陣列之SEM圖(a) 60 mM;(b) 40 mM;(c) 10 mM及其場發射場強度分佈圖(d) 60 mM;(e) 40 mM;(f) 10 mM 13 圖2-5、(a)2-D奈米碳管電場分佈模擬圖;(b)碳管之間距對場發射增益因子之影響;(c)碳管之間距對於電流密度之影響 13 圖2-6、(a)直徑38 nm與間距104 nm之奈米碳管陣列;(b)直徑19 nm與間距65 nm之奈米碳管陣列 14 圖2-7、固定間距下對不同高度之奈米碳管之F-N圖 (a)間距104 nm;(b)間距65 nm 14 圖2-8、固定間距下對不同高度之奈米碳管之場增益值分佈圖 (a)間距104nm;(b)間距65nm 15 圖2-9、(a)奈米碳管模擬參數設定表示圖;(b)3×3奈米碳管電場分佈模擬圖 16 圖2-10、各種奈米碳管陣列對於碳管間距受遮蔽效應影響之比例 16 圖2-11、(a)單根碳管最高發射電流對於間距之電流密度分佈圖;(b)不同面積奈米碳管對於間距之電流密度分佈圖 16 圖2- 12、(a)利用射頻電漿蝕刻法製作鑽石針尖陣列示意圖;(b) 多晶鑽石膜上方製作出二氧化矽圓盤作為蝕刻遮照圖;(c) 蝕刻70 分鐘後之柱狀鑽石陣列圖;(d) 經繼續蝕刻40分鐘後所呈現的錐形鑽石針尖陣列圖 19 圖2-13、(a)單顆鑽石柱之針尖;(b) 高深寬比之奈米針尖陣列 20 圖2-14、(a) [001]晶向面之金字塔形鑽石結構以及 (b) 45度斜角之SEM圖;(c)單顆鑽石針尖之TEM圖 21 圖2-15、矽針尖製作流程示意圖 22 圖2-16、以化學氣相沉積法於矽針尖上鍍上鑽石膜 22 圖2-17、以介電泳的方式於矽針尖上附著鑽石顆粒 23 圖2-18、矽模仁製作流程示意圖 23 圖2-19、Ralchenko等人所製作的金字塔形鑽石針尖陣列 24 圖2-20、長角形鑽石發射端 25 圖2-21、以聚焦離子束刻劃模仁所製作的鑽石針尖陣列 25 圖2-22、AAO結構示意圖 30 圖2-23、(a) cell內部之星狀孔洞示意圖;(b)電壓與cell大小關係 27 圖2-24、AAO底部阻障層 27 圖2-25、AAO離子遷移方向 28 圖2-26、AAO成長階段(a)定電流法之電壓對照時間圖;(b)電壓法之電流對照時間圖 29 圖2-27、AAO表面電場穿透路徑的形成以及孔洞前驅發展示意圖(a)表面電場均勻分布;(b)穿透路徑形成;(c)穿透路徑向下深入 30 圖2-28、硫酸陽極處理於不同電壓下,電流密度對照反應時間實驗圖 32 圖2-29、經三次陽極處理後之AAO (a)表面形貌;(b)孔洞相同方向排列之區域;(c)孔洞大小分佈長條圖 33 圖2-30、硫酸10 vol.-%電解液下硬陽極處理之高度規則AAO SEM圖。(a)15V,150 A/m2,5 ℃;(b)25 V,150 A/m2,0.1 ℃;(c)40 V,1600 A/m2,0.1 ℃,放大倍率50 k;(d)40 V,1600 A/m2,0.1 ℃,放大倍率100 k;(e)70V,2000 A/m2,0.1 ℃;(f) 70V,2000 A/m2,0.1 ℃,移除鋁材後之底部阻障層形狀 35 圖2-31、硬陽極處理及一般陽極處理之比較 (a) 以0.3 M草酸進行HA處理之電流密度與時間圖(紅色線為MA,其餘為HA);(b)HA與MA之膜厚與反應時間對照圖;(c)HA與MA之SEM圖,上方為上視圖,下方為剖面圖 37 圖2-32、碳相圖及各種合成技術之溫度與壓力區域 40 圖2-33、反應離子於基板沉積鑽石模型圖 42 圖2-34、鑽石薄膜成長示意圖 42 圖2-35、不同濃度的鑽石懸浮液對於表面附著情形與鑽石成長SEM圖(a)0.01 %,鑽石附著;(b)0.01 %,鑽石成長;(c)0.1 %,鑽石附著;(d)0.1 %,鑽石成長; (e)1 %,鑽石附著;(f)1 %,鑽石成長;(g)10 %,鑽石附著;(h)10 %,鑽石成長 49 圖3-1、實驗流程圖 50 圖3-2、陽極處理設備圖 53 圖3-3、鐵氟龍夾具構造圖 54 圖3-4、電拋光實驗裝置圖 55 圖3-5、PEI附著法示意圖 59 圖3-6、HFCVD與週邊系統裝置照片 62 圖3-7、燈絲架與上載台照片 62 圖3-8、鎢絲碳化之截面隨時間變化之照片 64 圖3-9、碳化之鎢絲表面溫度隋時間變化圖 64 圖3-10、SEM儀器照片 67 圖3-11、拉曼光譜儀器照片 68 圖3-12、(A)場發射量測系統儀器外觀;(B)電源供應器;(C)量測環境示意圖 71 圖4-1、0.5 M草酸定電壓120 V硬陽極處理(a)鋁材尚未移除;(b)移除鋁材後試片照片 75 圖4-2、草酸定電壓120 V陽極處理電流密度對時間變化曲線圖 75 圖4-3、0.5 M草酸定電壓120 V硬陽極處理SEM照片(a)試片底面阻障層上視圖(15 k);(b)試片底面阻障層剖面圖(60 k) 76 圖4-4、0.5 M草酸定電壓硬陽極處理電流密度對時間圖 77 圖4-5、0.5 M草酸定電壓硬陽極處理SEM照片(倍率30 k)(a)處理電壓80 V之試片背面;(b)處理電壓85 V之試片背面;(c)處理電壓90 V之試片背面;(d)處理電壓100 V之試片背面; (e)處理電壓120 V之試片背面;(f) 處理電壓130 V之試片背面;(g) 處理電壓140 V之試片背面;(h) 處理電壓150 V之試片背面 79 圖4-6、0.5 M硫酸定電壓45 V硬陽極處理試片照片 81 圖4-7、0.5 M硫酸硬陽極處理電流密度對時間圖 81 圖4-8、0.5 M硫酸硬陽極氧化鋁之SEM照片(a)處理電壓35 V之背面阻障層;(b)處理電壓45 V之背面阻障層;(c) 處理電壓55 V之背面阻障層 82 圖4-9、AAO阻障層為模板之鑽石針尖形成點示意圖 83 圖4-10、0.5 M硫酸硬陽極氧化鋁之背面阻障層剖視SEM照片(a)處理電壓35 V;(b)處理電壓45 V;(C)處理電壓55 V 84 圖4-11、0.5 M草酸硬陽極氧化鋁之背面阻障層剖視SEM照片(a)處理電壓80 V;(b)處理電壓90 V;(c)處理電壓100 V;(d)處理電壓120 V;(e)處理電壓140 V 85 圖5-1、PEI鑽石附著法試片表面SEM照片 87 圖5-2、以硫酸硬陽極處理模板成長鑽石針尖陣列之SEM照片(倍率20 k),(a)、(b)、(c)分別為處理電壓35 V、45 V、55 V針尖陣列上視圖;(d)、(e)、(f)分別為其相對應之斜視圖,成長氣體參數為CH4/H2=2/100 90 圖5-3、以硫酸硬陽極處理模板成長鑽石針尖陣列之SEM照片(倍率50 k ),(a)、(b)、(c)分別為處理電壓35 V、45 V、55 V針尖陣列上視圖;(d)、(e)、(f)分別為其相對應之斜視圖,成長氣體參數為CH4/H2=2/100 91 圖5-4、以草酸硬陽極處理模板成長鑽石針尖陣列之SEM照片(倍率20 k ),(a)、(b)、(c) 、(d)分別為處理電壓80 V、85 V、90 V、100 V針尖陣列上視圖;(e)、(f)、(g)、(h)分別為其相對應之斜視圖,成長氣體參數為CH4/H2=2/100 93 圖5-5、以草酸硬陽極處理模板成長鑽石針尖陣列之SEM照片(倍率20 k),(a)、(b)、(c) 、(d)分別為處理電壓120 V、130 V、140 V、150 V針尖陣列上視圖;(e)、(f)、(g)、(h)分別為其相對應之斜視圖,成長氣體參數為CH4/H2=2/100 94 圖5-6、以草酸硬陽極處理模板成長鑽石針尖陣列之SEM照片(倍率50 k),(a)、(b)、(c)、(d)分別為處理電壓80 V、85 V、90 V、100 V針尖陣列上視圖;(e)、(f)、(g)、(h)分別為其相對應之斜視圖,成長氣體參數為CH4/H2=2/100 95 圖5-7、以草酸硬陽極處理模板成長鑽石針尖陣列之SEM照片(倍率50 k),(a)、(b)、(c)、(d)分別為處理電壓120 V、130 V、140 V、150 V針尖陣列上視圖;(e)、(f)、(g)、(h)分別為其相對應之斜視圖,成長氣體參數為CH4/H2=2/100 96 圖5-8、奈米鑽石針尖放大圖(倍率50 k),藍色圈選處為單根三角錐形鑽石針尖 97 圖5-9、不同模板所製作出鑽石針尖之拉曼光譜檢測圖,鑽石成長氣體為氫氣及甲烷(CH4/H2=2/100) 98 圖5-10、以草酸硬陽極處理(140 V)模板成長鑽石針尖陣列之針尖位置示意圖,紅色點為所有針尖之中心點位置,藍色線條為中心之針尖與最近三個針尖之間距 99 圖5-11、以草酸硬陽極處理(140 V)模板成長鑽石針尖陣列之AFM圖。(a)、三維結構;(b)、以三條直線作為參考之平均針尖高度分析圖 100 圖5-12、以硫酸及草酸硬陽極處理模板成長鑽石針尖陣列之SEM照片(倍率50 k) (a)、(b)、(c)分別為硫酸處理電壓35 V、45 V、55 V,(d)、(e)、(f)、(g)、(h)分別為草酸處理電壓80 V、85 V、130 V,、140 V、150 V之斜視圖,成長氣體參數為N2/CH4/H2=1/2/100 103 圖5-13、不同模板所製作出鑽石針尖之拉曼光譜檢測圖,鑽石成長氣體為氮氣、氫氣及甲烷(N2/CH4/H2=1/2/100) 104 圖5-14、成長參數為CH4/H2=2/100之鑽石針尖陣列場發射電流量測圖:(a)硫酸處理(35 V);(b)硫酸處理(45 V);(c)硫酸處理(55 V);(d)草酸處理(80 V);(e)草酸處理(85 V);(f)草酸處理(130 V);(g)硫酸處理(140 V);(h)草酸處理(150 V),內插小圖為F-N線性圖 107 圖5-15、成長參數為N2/CH4/H2=1/2/100之鑽石針尖陣列場發射電流量測圖:(a)硫酸處理(35 V);(b)硫酸處理(45 V);(c)硫酸處理(55 V);(d)草酸處理(80 V);(e)草酸處理(85 V);(f)草酸處理(130 V);(g)硫酸處理(140 V);(h)草酸處理(150 V),內插小圖為F-N線性圖 108 圖5-16、鑽石針尖之間距與高度比值相對於起始電場及最高場發射電流密度關係圖 109 圖5-17、鑽石平均針尖間距相對於起始電場及最高場發射電流密度關係圖 110

    參考文獻
    [1] K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology: Wiley, 1994.
    [2] R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proceedings of the Royal Society of London. Series A, vol. 119, pp. 173-181, 1928.
    [3] H. Y. Tsai, et al., " Suppressed Screening Effects in Curvilinear Tetrahedral Diamond Field Emitter Arrays Fabricated on Anodic Aluminum Oxide," Journal of The Electrochemical Society, vol. 159, pp. K1-K4, 2012.
    [4] I. T. Han, et al, "Field emission of nitrogen-doped diamond films," Journal of Vacuum Science & Technology B, vol.16, pp.2052-2056, 1998.
    [5] J. He, et al., "Generalization of Fowler--Nordheim field emission theory for nonplanar metal emitters," Applied Physics Letters, vol. 59, pp. 1644-1646, 1991.
    [6] K. L. Jensen and E. G. Zaidman, "Field emission from an elliptical boss: Exact versus approximate treatments," Applied Physics Letters, vol. 63, p. 702, 1993.
    [7] K. L. Jensen and E. G. Zaidman, "Field emission from an elliptical boss: Exact and approximate forms for area factors and currents," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 12, p. 776, 1994.
    [8] K. L. Jensen and E. G. Zaidman, "Analytic expressions for emission in sharp field emitter diodes," Journal of Applied Physics, vol. 77, pp. 3569-3571, 1995.
    [9] T. S. Fisher and D. G. Walker, "Thermal and Electrical Energy Transport and Conversion in Nanoscale Electron Field Emission Processes," Journal of Heat Transfer, vol. 124, pp. 954-962, 2002.
    [10] T. S. Fisher, "Influence of nanoscale geometry on the thermodynamics of electron field emission," Applied Physics Letters, vol. 79, p. 3699, 2001.
    [11] L. Nilsson, et al., "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, vol. 76, pp. 2071-2073, 2000.
    [12] J. S. Suh, et al., "Study of the field-screening effect of highly ordered carbon nanotube arrays," Applied Physics Letters, vol. 80, pp. 2392-2394, 2002.
    [13] R. C. Smith and S. R. P. Silva, "Maximizing the electron field emission performance of carbon nanotube arrays," Applied Physics Letters, vol. 94, pp. 133104-3, 2009.
    [14] Y. J. Baik, et al., " Diamond tip fabrication by air-plasma etching of diamond with an oxide mask," Diamond and Related Materials, vol. 8, pp. 2169–2171, 1999.
    [15] Y. Nishibayashi, et al., "Anisotropic etching of a fine column on a single crystal diamond," Diamond and Related Materials, vol. 10, pp. 1732-1735, 2001.
    [16] W. J. Zhang, et al., "Oriented single-crystal diamond cones and their arrays," Applied Physics Letters, vol. 82, pp. 2622-2624, 2003.
    [17] W. J. Zhang, et al., "Structuring single- and nano-crystalline diamond cones," Diamond and Related Materials, vol. 13, pp. 1037-1043, 2004.
    [18] N. S. Xu, et al., "Enhancing electron emission from silicon tip arrays by using thin amorphous diamond coating," Applied Physics Letters, vol. 73, pp. 3668-3670, 1998.
    [19] A. P. Malshe, et al., "A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates," Diamond and Related Materials, vol. 8, pp. 1198-1213, 1999.
    [20] V. Raiko, et al., "Field emission observations from CVD diamond-coated silicon emitters," Thin Solid Films, vol. 290-291, pp. 190-195, 1996.
    [21] M. Hajra, et al., "Field emission characterization of silicon tip arrays coated with GaN and diamond nanoparticle clusters," in Papers from the 14th International Vacuum Microelectronics Conference, Davis, California (USA), 2003, pp. 458-463.
    [22] S. Albin, et al., "Diamond coated silicon field emitter array," in Papers from the 45th National Symposium of the American Vacuum Society, Baltimore, Maryland (USA), 1999, pp. 2104-2108.
    [23] V. V. Zhirnov, et al., "Characterization of field emission cathodes with different forms of diamond coatings," in Papers from the 11th international vacuum microelectronics conference, Asheville, North Carolina (USA), 1999, pp. 666-669.
    [24] K. Okano, et al., "Fabrication of a diamond field emitter array," Applied Physics Letters, vol. 64, pp. 2742-2744, 1994.
    [25] V. Ralchenko, et al., "CVD diamond films on surfaces with intricate shape," Nanostructured Thin Films and Nanodispersion Strengthened Coatings, vol. 155, pp. 209-220, 2004.
    [26] R. S. Takalkar, et al., "Edge-shaped diamond field emission arrays," Journal of Vacuum Science and Technology B, vol. 23, pp. 800-804, 2005.
    [27] Z. L. Wang, et al., "The high aspect ratio conical diamond tips arrays and their field emission properties," Diamond and Related Materials, vol. 15, pp. 631-634, 2006.
    [28] F. Keller, et al., "Structural Features of Oxide Coatings on Aluminum," Journal of The Electrochemical Society, vol. 100, pp. 411-419, 1953.
    [29] G. C. Wood, et al., "The Direct Observation of Barrier Layers in Porous Anodic Oxide Films," Journal of The Electrochemical Society, vol. 115, pp. 618-620, 1968.
    [30] O. Jessensky, et al., "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied Physics Letters, vol. 72, pp. 1173-1175, 1998.
    [31] V. P. Parkhutik and V. I. Shershulsky, "Theoretical modelling of porous oxide growth on aluminium," Journal of Physics D: Applied Physics, vol. 25, pp. 1258-1263, 1992.
    [32] G. E. Thompson, "Porous anodic alumina: fabrication, characterization and applications," Thin Solid Films, vol. 297 pp. 192-201, 1997.
    [33] S. K. Thamida and H.-C. Chang, "Nanoscale pore formation dynamics during aluminum anodization," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 12, pp. 240-251, 2002.
    [34] S. Shingubara, et al., "Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum," Japanese Journal of Applied Physics, vol. 36, p. 7791, 1997.
    [35] S. Ono, et al., "Controlling Factor of Self-Ordering of Anodic Porous Alumina," Journal of The Electrochemical Society, vol. 151, pp. B473-B478, 2004.
    [36] H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science, vol. 268, pp. 1466-1468, 1995.
    [37] F. Nasirpouri, et al., "A comparison between self-ordering of nanopores in aluminium oxide films achieved by two- and three-step anodic oxidation," Current Applied Physics, vol. 9, pp. S91-S94, 2009.
    [38] S. Shingubara, et al., "Self-Organization of a Porous Alumina Nanohole Array Using a Sulfuric/Oxalic Acid Mixture as Electrolyte," Electrochemical and Solid-State Letters, vol. 7, pp. E15-E17, 2004.
    [39] S.-Z. Chu, et al., "Fabrication of Ideally Ordered Nanoporous Alumina Films and Integrated Alumina Nanotubule Arrays by High-Field Anodization," Advanced Materials, vol. 17, pp. 2115-2119, 2005.
    [40] W. Lee, et al., "Fast fabrication of long-range ordered porous alumina membranes by hard anodization," Nature Materials, vol. 5, pp. 741-747, 2006.
    [41] Y. Li, et al., "Fabrication of highly ordered nanoporous alumina films by stable high-field anodization," Nanotechnology, vol. 17, pp. 5101-5105, 2006.
    [42] Y. B. Li, et al., "High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range," Applied Physics Letters, vol. 91, pp. 073109-3, 2007.
    [43] D. Li, et al., "Investigation on highly ordered porous anodic alumina membranes formed by high electric field anodization," Materials Chemistry and Physics, vol. 111, pp. 168-171, 2008.
    [44] W. G. Eversole,"Synthesis of diamond," US Patent, 1958.
    [45] J. C. Angus, et al., "Growth of Diamond Seed Crystals by Vapor Deposition," Journal of Applied Physics, vol. 39, pp. 2915-2922, 1968.
    [46] B. V. Deryagin, et al., Dokl. Akad. Nauk. SSSR, vol. 231, p. 333, 1976.
    [47] P. K. Bachmann and R. Messier, in Chemical & Engineering News, ed, 1989.
    [48] P. E. Pehresson, et al., Diamond Films And Coatings,edited by R. F. Davis, 1993.
    [49] R. Kern, et al., Current Topics in Material Science vol. 3, 1979.
    [50] H. Liu and D. S. Dandy, Diamond Chemical Vapor Deposition:Nucleation and Early Growth Stages, 1995.
    [51] O. Ternyak, et al., "Evolution and properties of adherent diamond films with ultra high nucleation density deposited onto alumina," Diamond and Related Materials, vol. 14, pp. 144-154, 2005.
    [52] Y.-C. Chen, et al., "Characteristics of ultra-nano-crystalline diamond films grown on the porous anodic alumina template," Diamond and Related Materials, vol. 15, pp. 324-328, 2006.
    [53] R. K. Singh, el al., "Synthesis of (111) oriented diamond thin films by electrophoretic deposition process" Applied Physics Letters, vol. 70, pp.1542-1544, 1997.
    [54] J. J. Adair and R. K. Singh, "Enhanced chemical vapor deposition of diamond and related materials," US Patent, 1996.
    [55] D. Gilbert, et al., "Deposition of diamond from alcohol precursors in an electron cyclotron resonance plasma system," Journal of Electronic Materials, vol. 26, pp. 1326-1330, 1997.
    [56] E. Zeiler, et al., "Structural changes of tungsten heating filaments during CVD of diamond," Materials Science and Engineering A, vol. 335, pp. 236-245, 2002.
    [57] L. S. Pan and D. R. Kania, Diamond: electronic properties and applications: Kluwer Academic Publishers, 1995.
    [58] Z. F. Zhou, et al., "Growth of the nickel nanorod arrays fabricated using electrochemical deposition on anodized Al templates," Materials Letters, vol. 62, pp. 3419-3421, 2008.
    [59] J. M. Xu, et al., "Periodic array of uniform ZnO nanorods by second-order self-assembly," Applied Physics Letters, vol. 84, pp. 3376-3378, 2004.
    [60] H. Masuda and M. Satoh, "Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask," Japanese Journal of Applied Physics, vol. 35, p. L126, 1996.
    [61] F. M. Pan, et al., "Self-organized titanium oxide nanodot arrays by electrochemical anodization," Applied Physics Letters, vol.82, pp. 2976-2978, 2003.
    [62] K. Schwirn, et al., "Self-Ordered Anodic Aluminum Oxide Formed by H2SO4 Hard Anodization," ACS Nano, vol. 2, pp. 302-310, 2008.
    [63] R. J. Nemanich, et al., "Raman scattering characterization of carbon bonding in diamond and diamondlike thin films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 6, pp. 1783-1787, 1988.
    [64] S. G. Wang, et al., "Preparation and electron field emission properties of nano-diamond films," Materials Letters, vol. 56, pp. 948-951, 2002.
    [65] G. F. Zhang, et al., "High nitrogen amounts incorporated diamond films deposited by the addition of nitrogen in a hot-filament CVD system," Surface and Coatings Technology, vol. 122, pp. 268-272, 1999.
    [66] Y. M. Liu, et al., "Carbon nanotube field emission cathodes fabricated with trivalent chromium conversion coated substrates," Applied Surface Science, vol.256, pp. 1731-1734, 2010.
    [67] H. S. Uh, et al., "Enhanced field emission properties from titanium-coated carbon nanotubes," Diamond & Related Materials, vol.19, pp. 586-589, 2010.
    [68] Y. L. ZHANG, et al., "Synthesis and field emission property of carbon nanotubes with sharp tips," New Carbon Materials, vol.26, pp. 52-56, 2011.
    [69] G. Chen, et al., "Carbon Nanotubes Cathode of Field Emission Lamp Prepared by Electrophoretic Deposition," Energy Procedia, vol.16, pp. 240-243, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE