簡易檢索 / 詳目顯示

研究生: 陳畯學
Chen, Hsin-Hsieh
論文名稱: 嚴謹的設計、模擬與分析高頻VLSI時鐘樹
Rigorous Design, Modeling and Analysis of High-Frequency VLSI Clock Trees
指導教授: 張克正
Chang, Keh-Jeng
口試委員: 陳竹一
唐經洲
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 222
中文關鍵詞: 同步電路時脈偏斜時脈抖動高頻部份電感迴路電感電感矩陣晶片電感模擬時鐘樹遮罩繞線系統晶片時鐘樹射頻晶片時鐘樹H型時鐘樹絕對零偏斜時脈繞線演算法時脈緩衝器的添加預備時間的違反維持時間的違反偶 (奇、共)模平均時脈功耗互連線的變異供電壓的變異面積的補償新思Astro分散式模型量產可行性設計
外文關鍵詞: synchronous circuits, clock skew, clock jitter, high-frequency, partial inductance, loop inductance, inductance matrix, on-chip inductance modeling, shield, SoC clock tree, RF clock tree, H-tree, exact zero skew clock routing algorithm, clock buffer insertion, setup time violation, hold time violation, even (odd, common) mode, average clock power dissipation, interconnect variation, power supply voltage variation, area penalty, Synopsys Astro, distributed model, DFM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 時脈訊號是同步電路設計中最重要的部份,一個擁有好的時脈訊號的電路才能算是一個好的設計,而clock skew與clock jitter更都是關乎設計能否合乎規格的重要因素之一。

    所以大家無不汲汲營營發明各種繞線演算法企圖去降低clock skew或clock jitter,在過去僅考慮電阻與電容的情況下,目前的演算法大致可解決clock skew與clock jitter的問題,但隨著製程地演進與頻率進入GHz的時代,由於電路阻抗Z=R+jωL,ω=2πf,頻率越來越高,感抗的效應變得跟阻抗一樣重要,甚至比阻抗還要大,如果再考慮到串音效應,電感會變得非常重要,尤其是在會常常快速改變訊號的時脈訊號,如果不能準確的把寄生電阻、電容與電感抽取出來並模擬,晶片很可能就會出現訊號判斷錯誤 (false switch)的情形,但現在市售的商業軟體,往往忽略了電感的效應,應該是說他們不知道如何分析電感,所以假裝看不見電感,如此一來很可能造成clock skew誤判的情形,晶片良率下降,不確定性增加。有鑑於此,我們研究開發了一全新的軟體: ClockHenry,以方便時鐘樹設計者抽取SPICE netlist中的寄生電阻、電容與電感值。

    此外我們研究主張採用一種新穎的時鐘樹繞線策略:時鐘樹遮罩繞線 (clock shield routing)最佳化現有的時鐘樹環境以期能夠達到降低加入電感考量造成clock skew變大的情況。本篇論文我們會列舉五個不同floorplan架構的SoC設計為基礎,並分別採用多種不同風格的時鐘樹繞線方式,block level採用一般APR軟體提供的傳統非對稱時鐘樹繞線方式,而global clock採用full-custom 對稱的H-tree或清大蔡仁松教授的exact zero skew時脈繞線演算法,分別量化分析傳統時鐘樹繞線和時鐘樹遮罩繞線有無加入電感考量的電性表現。

    然而不幸地製程的參數會因為一些不確定因素,像環境變化、儀器的不同......等而有所變動,所以如何快速有效率的分析與模擬不可避免的製程變動也非常重要。由公開的文獻[12]可知,製程變動主要分為三類,分別為device、system、interconnect製程變動,而我們主要研究的目標在interconnect與system的製程變動,主要變動的參數像是線寬 (metal width)、線厚 (metal thickness)、層間介電層厚度 (interlayer dielectric thickness, ILD thickness )與power supply voltage,本篇論文最後也會利用我們的時序分析方法量化不同的時鐘樹繞線風格在interconnect與system製程變動下的電性表現並證明與傳統時鐘數繞線相比時鐘樹遮罩繞線較不敏感於製程變動。

    然而時鐘樹遮罩繞線並非完美無缺的,它也伴隨一些缺點,其中最重要的是面積與平均時脈功耗的補償,本篇論文我們也會針對幾種代表性的時鐘樹遮罩繞線方法,量化分析其面積與平均時脈功耗,提供時鐘樹設計者在設計時脈時的取捨標準。

    最後,我們比較採用我們的SoC繞線方法與Astro的SoC繞線方法關於clock skew的成果,這邊我需要特別強調的是我們觀察到CIC提供的Synopsys Astro只能給予設計者晶圓廠提供的電阻與電容表格,因此我們台灣學術界須採用額外的軟體以期加入電感的考量,本實驗室也開發了這樣的軟體取名為ClockHenry,它可幫助設計者有效率地萃取電阻、電容與電感表格取代CIC給予我們的電阻與電容表格以利於整體SoC clock trees的模擬。由於H-tree或exact zero skew時脈繞線演算法設計出發點是假設金屬線的每單位長度的電阻、電容都相同,此概念與遮罩後的時脈線不謀而合,所以採用時鐘樹遮罩繞線後clock skew的改善效果相當不錯。而Astro的時鐘樹繞線演算法是採用加入clock buffers以平衡各時脈路徑的延遲時間,加入clock buffers的數量與位置是根據傳統時鐘樹繞線環境去設計的,所以採用時鐘樹遮罩繞線後clock skew的改善效果不見得會很好。

    關鍵字: 同步電路、時脈偏斜、時脈抖動、高頻、部份電感、迴路電感、電感矩陣、晶片電感模擬、時鐘樹遮罩繞線、系統晶片時鐘樹、射頻晶片時鐘樹、H型時鐘樹、絕對零偏斜時脈繞線演算法、時脈緩衝器的添加、預備時間的違反、維持時間的違反、偶 (奇、共)模、平均時脈功耗、互連線的變異、供電壓的變異、面積的補償、新思Astro、分散式模型、量產可行性設計。


    Clock signal is the most important part in synchronous circuit and a good circuit design must have a robust clock signal. Clock skew and clock jitter are the most critical factors whether the design meets the specifications or not.

    Therefore, many devote to inventing some routing algorithms attempting to reduce the clock skew or clock jitter. In the past, we only considered the effects of resistance and capacitance. Those algorithms can generally solve the clock skew and clock jitter problems. However, with the advance of silicon process and giga-hertz-level frequency, the effect of inductance has become as important as that of resistance, or even greater than the resistance. For crosstalk effect, the inductance becomes very important, especially in the fast-switching signals like clock signals. Furthermore, the chip may catch the wrong signals (false switch) if we cannot extract parasitic resistance, capacitance, inductance and simulate them accurately. But now, the commercial software usually ignores the effect of inductance. It should be said that they do not know how to analyze the inductance, so they pretend that they can’t see the inductance. As a result, it is likely to misjudge the value of clock skew, decrease the chip yield and increase uncertainties. In view of this, we develop novel software: ClockHenry. It’s convenient to extract parasitic resistance, capacitance and inductance in the SPICE netlist for clock tree designers.

    Besides, we advocate using a new clock tree routing strategy: clock shield routing for clock nets. The clock nets should be optimized based on EM waves in order to decrease the clock skew due to the effect of inductance. After adopting the clock shield routing approach, there is still need to judge the clock skew by modeling the effect of inductance accurately. In this thesis, I will enumerate five kinds of floorplan architectures and route the clock trees with a variety of comprehensive styles of clock tree routing strategies. We route block-level clock lines with traditional and asymmetric clock tree routing approach and then we route global clock lines with full-custom symmetric H-tree or with exact zero skew clock routing algorithm proposed by NTHU Professor Ren-song Tsay. Then, we analyze quantitatively the electric properties according to our comprehensive sets of clock design ideas.

    Furthermore, the process parameters may change due to uncertain factors such as environmental variations, different instruments, etc. So how to analyze and simulate inevitable process variations efficiently and accurately is also very important. We know that process variations can be divided into three categories namely (a) device, (b) system and (c) interconnect process variations from public domain literature [12]. We will focus on interconnect and system process variations. The main variable parameters are metal width, metal thickness, interlayer dielectric thickness (ILD thickness) and power supply voltage. Using interconnect and system process variations, we can quantify the electric properties between different clock tree routing methodologies along with our timing analysis method. In this way, we deomonstrate the clock shield routing strategy is less sensitive to process variations compared with traditional clock routing strategy.

    However, the clock shield routing strategy is not perfect since it has some disadvantages. The most important two are silicon area and average clock power dissipation penalties. In this thesis, we describe representative clock shield routing approaches along with the corresponding area and average clock power dissipation penalties, which are in the range of.

    Finally, we experiment on the clock skew performance between our SoC clock routing and Astro clock routing approaches. We observe that Synopsys Astro versions from CIC can only give designers the resistance and capacitance tables from the foundries. Therefore, the academia in Taiwan must add the effect of inductance into consideration by extra software, which is implemented in our lab and is called ClockHenry that can extract resistance, capacitance and inductance tables to supersede CIC tables available. We need Clock Henry to facilitate the overall simulation of SoC clock trees. Because the foundations of H-tree or exact zero skew clock routing algorithm are based on the same resistance and capacitance per unit length. And these concepts coincide with clock lines after shielding. So clock skew can be approved after adopting clock shield routing algorithm. However, the foundation of Astro clock routing approach is to balance delay time of each clock path. How to determine the number and location of clock buffers is according to the environment of traditional clock trees. The improvement of clock skew may not be very good after adopting clock shield routing algorithm.

    Keywords: synchronous circuits, clock skew, clock jitter, high-frequency, partial inductance, loop inductance, inductance matrix, on-chip inductance modeling, shield, SoC clock tree, RF clock tree, H-tree, exact zero skew clock routing algorithm, clock buffer insertion, setup time violation, hold time violation, even (odd, common) mode, average clock power dissipation, interconnect variation, power supply voltage variation, area penalty, Synopsys Astro, distributed model, DFM.

    ABSTRACT (英文摘要) I 中文摘要 III 目錄 V 圖目錄 IX 表目錄 XVII 第一章 簡介 1 1.1 簡介 1 1.2 動機 2 1.3 THE RELATIONSHIP BETWEEN INDUCTANCE AND TIMING 2 1.4 NTHU0 EXPERIMENT AND SHIELD DEFINITION (有考慮電感) 6 1.5 論文架構 9 第二章 背景介紹和相關研究 12 2.1 時脈繞線技術、時脈偏斜與時脈抖動 12 2.2 PLL, DLL AND MULTI-PHASE CLOCK TREES 30 2.2.1 鎖相迴路 (Phase-Locked Loop, PLL) 30 2.2.1.1 類比式鎖相迴路 30 2.2.1.2 數位式鎖相迴路 33 2.2.1.3 鎖相迴路總結 34 2.2.2 延遲鎖定迴路 (Delay-Locked Loop, DLL) 35 2.2.2.1 類比式延遲鎖定迴路 35 2.2.2.2 數位式延遲鎖定迴路 36 2.2.2.3 延遲鎖定迴路總結 36 2.2.3 Multi-phase clock tree 37 2.2.4 PLL與DLL特性總結 38 2.3 CRYSTAL OSCILLATOR AND CLOCK GENERATOR 39 2.4 INDUCTANCE 39 2.4.1 Partial and loop inductance 39 2.4.2 如何得到partial與loop inductance 40 2.4.2.1 Maxwell’s equations and inductance matrix 40 2.4.2.2 3D field solver FastHenry 43 2.5 EVEN, ODD AND COMMON MODE 44 2.6 CLOCK POWER DISSIPATION 47 2.7 INTERCONNECT PARAMETER AND VARIATION 48 2.8 POWER SUPPLY VOLTAGE VARIATION 50 2.9 U-SHAPED SHIELD 52 2.10 WIDE AND NARROW WIRE WIDTH 53 2.11 CELL-BASED DESIGN FLOW 53 2.12 相關商業軟體 54 2.12.1 Verilog & VHDL 55 2.12.2 NCVerilog & verilog-XL 55 2.12.3 Design Compiler & Prime Time 56 2.12.4 SOC Encounter & Astro 57 2.12.5 DRC, LVS and LPE 58 2.12.6 Raphael 59 2.12.7 FastHenry 59 2.12.8 Perl 60 2.12.9 HSPICE 60 2.12.10 NanoSim 60 第三章 萃取電阻、電容與電感資料庫軟體CLOCKHENRY與查表程式 61 3.1金屬連接線參數對電阻、電容、電感趨勢的影響 61 3.1.1 金屬連線長度對電阻、電容、電感的影響 61 3.1.2 金屬連線寬度對電阻、電容、電感的影響 63 3.1.3 金屬連線線距對電阻、電容、電感的影響 65 3.1.4 金屬連線頻率對電阻及電感的影響 67 3.2 VIA參數對電阻、電容、電感趨勢的影響 68 3.2.1 Via與via間距對電阻、電容、電感的影響 69 3.2.2 Via頻率對電阻及電感的影響 71 3.3 全新的萃取電阻、電容與電感資料庫軟體CLOCKHENRY 72 3.3.1 利用ClockHenry軟體萃取電阻、電容與電感資料庫的流程 72 3.3.2 On-chip金屬連接線與via的分類與參數 72 3.3.2.1 On-chip金屬連接線的分類與參數 73 3.3.2.2 On-chip via的分類與參數 77 3.3.3 On-chip金屬連接線與via輸入檔的格式 78 3.3.4 查表流程與內插方法 80 3.3.5 輸出的RLCK SPICE netlist格式 80 第四章 實驗結果 83 4.1 傳統時鐘樹繞線與時鐘樹遮罩繞線實作 83 4.1.1傳統時鐘樹繞線實作 83 4.1.1.1 Block-level netlist 83 4.1.1.2 Clock buffer insertion 89 4.1.1.3 SoC-level clock tree 92 4.1.2時鐘樹遮罩繞線實作 96 4.2傳統時鐘樹繞線與時鐘樹遮罩繞線電性比較 (有考慮電感) 102 4.2.1 傳統時鐘樹繞線與時鐘樹遮罩繞線在clock skew上的比較 103 4.2.1.1 H-tree 103 4.2.1.2 Square floorplan architecture 114 4.2.1.3 Rectangle floorplan architecture 127 4.2.1.4 4pa case floorplan1 139 4.2.1.5 4pa case floorplan2 145 4.2.1.6 傳統時鐘樹繞線與各種時鐘樹遮罩繞線在clock skew 上的比較總結 151 4.2.2 傳統時鐘樹繞線與時鐘樹遮罩繞線在clock power dissipation上的比較 155 4.2.2.1 H-tree 155 4.2.2.2 Square floorplan architecture 155 4.2.2.3 Rectangle floorplan architecture 155 4.2.2.4 4pa case floorplan1 156 4.2.2.5 4pa case floorplan2 156 4.2.2.6 傳統時鐘樹繞線與時鐘樹遮罩繞線在clock power dissipation 上的比較總結 157 4.2.3 在interconnect製程變動下傳統時鐘樹繞線與時鐘樹遮罩繞線的clock skew比較 158 4.2.3.1 H-tree架構 161 4.2.3.2 Square floorplan architecture 164 4.2.3.3 Rectangle floorplan architecture 168 4.2.3.4 4pa case floorplan1 172 4.2.3.5 4pa case floorplan2 174 4.2.3.6 在製程變動下傳統時鐘樹繞線與時鐘樹遮罩繞線在clock skew上的比較結論 176 4.2.4 在power supply voltage變動下傳統時鐘樹繞線與時鐘樹遮罩繞線的clock skew比較 177 4.2.4.1 H-tree架構 178 4.2.4.2 Square floorplan architecture 180 4.2.4.3 Rectangle floorplan architecture 184 4.2.4.4 在power supply voltage變動下傳統時鐘樹繞線與時鐘樹遮罩繞線在clock skew上的比較結論 188 4.2.5 各種時鐘樹遮罩繞線與傳統時鐘樹繞線相比的area penalty 189 4.2.6 我們採用的SoC時鐘樹繞線與Astro時鐘樹繞線方法關於clock skew的成果比較 191 第五章 結論 196 第六章 未來工作 200 6.1 自動化 200 6.2 SHIELD AND NOISE 200 6.3 ACTIVE SHIELD 200 6.4 PLL AND DLL 201 6.5 ANALOG CLOCK TREES 201 6.6 RF CLOCK TREES 201 6.7 PACKAGE CLOCK TREES 202 6.8 ASYNCHRONOUS AND SYNCHRONOUS CIRCUITS 202 參考文獻 204 附錄 207 附錄1.1 訊號完整度 207 附錄1.2 傳輸線的分類 207 附錄1.3 電阻與電容 209 附錄1.4 取得電阻、電容、電感值的方法 211 附錄1.5 我們抽取電阻、電容值的方法與ASTRO TLUPLUS的比較 212 附錄1.6 我們抽取電感值的方法與經驗公式的比較 214 附錄1.7高頻與分散式模型 216 附錄2 RAPHAEL INPUT FILE FOR ON-CHIP金屬線CASE (M4 ARRAYS UNDER M5) 218 附錄3 FASTHENRY INPUT FILE FOR ON-CHIP金屬線M3 CASE 220

    [1] Li-Fu Chang, Keh-Jeng Chang and Robert Mathews, "When Should On-Chip Inductance Modeling Become Necessary for VLSI Timing Analysis," in Proceedings of the IEEE International Interconnect Technology Conference (IITC), 2000, pp. 170-172.
    [2] Kenneth L. Shepard and Vinod Narayanan, "Noise in Deep Submicron Digital Design,” in Digest of Technical Papers IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 10-14 Nov. 1996, pp. 524-531.
    [3] David A. Hodges, Horace G. Jackson and Resve A. Saleh, Analysis and Design of Digital Integrated Circuits. McGraw-Hill, New York, 2003, Third Edition, 600 pages.
    [4] [Online]. Available: http://en.wikipedia.org/wiki/Verilog
    [5] Jesse Craig and Denise Powell, “Effect of Specialized Clock Routing on Clock Tree Timing, Signal Integrity, and Routing Congestion,” in the Digest of SNUG (Synopsys Users Group), San Jose, 2005.
    [6] John P. Uyemura, Introduction to VLSI Circuits and Systems. John Wiley & Sons, New York, 2002, 656 pages.
    [7] Neil H. E. Weste and David Harris, CMOS VLSI Design. Addison-Wesley, Boston, 2005, Third Edition, 967 pages.
    [8] Eby G. Friedman (Ed.), Clock Distribution Networks in VLSI Circuits and Systems, IEEE Press. 1995.
    [9] Thucydides Xanthopoulos, Clocking in Modern VLSI Systems. Springer Verlag, New York, 2009, 320 pages.
    [10] Fan Hsiang Kung, “All Digital Phase-Locked Loop with Programmable Phase Injection Locking,” M.S. Dissertation, Department of Electrical and Control Engineering, National Chiao Tung University, Taiwan, 2009.
    [11] Li Pu Chuang, “An All-Digital Fast-Lock Self-Calibrated Multiphase DLL,” M.S. Dissertation, Department of Electronics Engineering & Institute of Electronics, National Chiao Tung University, Taiwan, 2008.
    [12] Payman Zarkesh-Ha, Tony Mule and James D. Meindl, “Characterization and Modeling of Clock Skew with Process Variation,” in Proceedings of IEEE Custom Integrated Circuits Conference (CICC), 1999, pp. 441-444.
    [13] Ying Liu, Sani R. Nassif§, Lawrence T. Pileggi and Andrzej J. Strojwas, “Impact of Interconnect Variations on the Clock Skew of a Gigahertz Microprocessor,” in Proceedings of the 37th Design Automation Conference (DAC), 2000, pp. 168-171.
    [14] Ying Liu, Lawrence T. Pileggi and Andrzej J. Strojwas, “Model Order- Reduction of RC (L) Interconnect including Variational Analysis,” in Proceedings of the 36th Design Automation Conference (DAC), 1999, pp. 201-206.
    [15] Keh-Jeng Chang, “Accurate On-Chip Variation Modeling to Achieve Design for Manufacturability,” in Proceedings of the 4th IEEE International Workshop on System-on-Chip for Real-Time Applications (IWSOC), 19-21 July 2004, pp. 219- 222.
    [16] Masanori Hashimoto, Tomonori Yamamoto and Hidetoshi Onodera, “Statistical Analysis of Clock Skew Variation in H-tree Structure,” in Proceedings of the 6th International Symposium on Quality of Electronic Design (ISQED), Vol. 88, No. 12, 21-23 March 2005, pp. 402- 407.
    [17] Chih-Yuan Huang, “A New Verification Strategy to Rigorously Test Two Pieces of Electromagnetic Field Simulation Software,” M.S. Dissertation, Department of Computer Science, National Tsing Hua University, Taiwan, 2007.
    [18] Weisheng Fei, “Comprehensive Evaluations of Three-Dimensional Electromagnetic Field Simulation Software for Accurate Nanometer Device Modeling,” M.S. Dissertation, Department of Computer Science, National Tsing Hua University, Taiwan, 2007.
    [19] [Online]. Available: http://www.opencores.org/
    [20] Himanshu Kaul, Dennis Sylvester and David Blaauw, “Active Shielding of RLC Global Interconnects,” in Proceedings of the 8th ACM/IEEE Intl. Workshop on Timing Issues in the Specification and Synthesis of Digital Systems, 2002, pp. 98-104.
    [21] Ren-Song Tsay, “An Exact Zero-Skew Clock Routing Algorithm,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 2, pp. 242-249, Feb. 1993.
    [22] 鐘文耀與鄭美珠, CMOS 電路模擬與設計。 全華科技圖書出版, 2003。
    [23] Xiaoning Qi, Bendik Kleveland, Zhiping Yu, Simon Wong, Robert Dutton and Tak Young, “On-Chip Inductance Modeling of VLSI Interconnects,” in Digest of Technical Papers IEEE International Solid-State Circuits Conference (ISSCC), 2000, pp. 172–173.
    [24] Norman Chang, Shen Lin, Lei He, O. Sam Nakagawa and Weize Xie, “Clocktree RLC Extraction with Efficient Inductance Modeling,” in Proceedings of ACM/IEEE Design, Automation and Test Europe Conference and Exhibition (DATE), pp. 522-526, 2000.
    [25] Tse-Hung Liu, “Accurate Nanometer Inductance Modeling for SoC Designs,” M.S. Dissertation, Department of Computer Science, National Tsing Hua University, Taiwan, 2005.
    [26] Chin-Da Chan, Cell-Based IC Physical Design and Verification with IC Compiler. CIC training manual, 2010.
    [27] 劉深淵與楊清淵, 鎖相迴路。 滄海書局出版, 2006。
    [28] Shu-Ming Chang, “Design and Analysis of Multiphase DLL-based Frequency Multipliers,” M.S. Dissertation, Department of Electrical Engineering, National Central University, Taiwan, 2005.
    [29] 楊榮林, “淺窺非同步電路設計-沒有Clock 的數位世界,” 南台科技大學技術報告, 2009.
    [30] Stefan Rusu, “Trends and Challenges in High-Performance Microprocessor Design,” in Digest of Annual Electronic Design Process Symposium, 2004.
    [31] Stefan Rusu, “Clock Generation and Distribution for High-Performance Processors,” in Digest of Annual Electronic Design Process Symposium, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE