簡易檢索 / 詳目顯示

研究生: 吳晉齊
Wu, Chin-Chi
論文名稱: 以高密度化學氣相沉積系統製備矽薄膜及分析其參數對矽薄膜的影響
Analysis of the impact of parameters on silicon thin films synthesized by HDPCVD
指導教授: 黃惠良
Hwang, Huey-Liang
口試委員: 黃惠良
曾百亨
邱福千
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 70
中文關鍵詞: 高電漿密度化學氣相沉積系統感應式耦合電漿輔助化學氣相沉積系統矽薄膜
外文關鍵詞: HDPCVD, ICPCVD, si thin film
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We have developed a novel structure which can achieve the efficiency of 17.04%. The structure of the cell is combined of a-Si:H and poly-Si:H of grain size more than 1um with only a pn junction. To fabricate the cell, I will first analyze the parameters to manufacture the poly-Si:H thin film with ICPCVD.
    In this thesis, I will use N&K, 4-point probe, SEM, XRD, Raman, XRD and Hall measurement to analyze the crystallinity and concentration of thin films. In the experiment, I will fabricate the films in different power densities and pressures.
    We can get the thin film of about 50nm and crystalline fraction of 74.35% with power density of 0.694 W/cm2. Moreover, n-doped thin film of 3.27E19 cm-3 and p-doped of 8.317E16 cm-3 are obtained. We also propose the formation mechanism of uc-Si thin films.


    在之前的工作中,我們已經發展出了一個可以達到效率17.04% 的新結構。這個結構是由非晶矽和晶粒大於一微米的多晶矽所組成,且只有一個PN接面。為了完成這個新結構的太陽電池,我將會先分析ICPCVD的參數以製作出多晶矽薄膜。
    在這篇論文裡,我將會用到N&K、四點探針、掃描式電子顯微鏡、拉曼光譜儀、X光繞射儀和霍爾量測,去分析薄膜的結晶度和濃度。在這個實驗裡,我將會在不同的功率密度和壓力下去製作出矽薄膜。
    實驗結果顯示當功率達到0.694 W/cm2時,我們可以得到晶粒大小約50奈米,結晶度74.35%。而且,我們也製作出N摻雜濃度為3.27E19 cm-3和P摻雜濃度為8.317E16 cm-3。我們也對微晶矽薄膜提出其形成的機制。

    致謝 1 Abstract 2 中文摘要 3 Chapter 1. Introduction 4 1-1. Development of solar cell 4 1-2. Silicon Thin film solar cell 4 1-3. Objective 5 Reference: 7 Chapter 2. Growth mechanism and solar cell theory 8 2-1. Plasma generation methods 8 2-2. Plasma generation mechanisms 10 2-3. Secondary gas-phase reaction mechanisms 12 2-4. Surface reaction mechanisms 15 Reference: 18 Chapter 3. Experimental process and equipments 20 3-1. Experimental process 20 3-1-1. substrate preparing process 20 3-1-2. Deposition process 21 3-1-3. Deposition parameter 22 3-2. Equipment for deposition 22 3-3. Equipment for characterization 25 3-3-1. N&K Thin Film Measurement System 25 3-3-2. Four point probe 26 3-3-3. Hall Effect Measurement 28 3-3-4. Raman Spectroscopy 30 3-3-5. X-Ray Diffraction 31 3.3.6 High-resolution Scanning Electron Microscope 33 Reference: 36 Chapter 4. Results and discussion 37 4-1. Effect of power density 37 4-1-1. Effect of power density on the crystalline fraction 38 4-1-2. Effect of power density on the growth rate 42 4-1-3. Effect of power density on the crystalline orientation 43 4-1-4. Effect of power density on the grain size 47 4-2. Effect of pressure 49 4-2-1. Effect of pressure on the crystallinity and growth rate 50 4-2-2. Effect of pressure on the crystalline orientation 52 4-2-3. Effect of pressure on the grain size 55 4-3. Effect of doping gas flow 56 4-3-1. Effect of PH3 flow on the crystallinity and growth rate 57 4-3-2. Effect of PH3 flow on the carrier concentration 59 4-3-3. Effect of PH3 flow on the grain size 60 4-3-4. Effect of B2H6 flow on the crystallinity, growth rate and carrier concentration 62 4-3-5. Effect of B2H6 flow on the grain size 64 Reference: 66 Chapter 5. Conclusion and Future work 67 5-1. Conclusions 67 5-2. Future work 67 Reference: 70

    [1]. A. E. Becquerel, Comt. Rend. Acad. Sci. 9 (1839) 561.
    [2]. D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 25 (1954)
    676.
    [3] Carlson, Wronski, Appl. Phys. Lett. 28 (1976) 671.
    [4]. D. L. Staebler, C. R. Wronski, Appl. Phys. Lett. 31 (1977) 292.
    [5]. H. Sonobe, A. Sato, S. Shimizu, T. Matsui, M. Kondo, A. Matsuda,
    Thin Sol. Films 502 (2006) 306.
    [6]. A. J. LETHA, PhD Thesis, (2009)

    [1]. Strahm, B.; Howling, A. A.; Sansonnens, L.; Hollenstein, C. Plasma
    Sources Sci. Technol. 16, 80, 2007.
    [2]. Biaggi-Labiosa A, Sol´a F, Resto O, Fonseca L F,Gonz´alez-Berr´ıos A, Jes´us J De and Morell G, Nanotechnology 19 225202, 2008.
    [3]. Dalal V L, Graves J and Leib J 2004 Appl. Phys. Lett. 85 1413
    [4]. Pontoh M., Dalal V. and Gandhi N., ‘Characterization of ECR plasama’, Mater. Res. Soc. Symp. Proc. 715, 2002.
    [5]. Kaushal S., Dalal V.L. and Xu J., J. Non-Cryst. Solids, 198-200, 1996.
    [6]. H. Kirimura, K. Kubota, E. Takahashi, S. Kishida, K. Ogata, Y. Uraoka, T. Fuyuki, Jpn. J. Appl. Phys. 43, 7929, 2004.
    [7]. Xu S, Ostrikov K N, Li Y, Tsakadze E L and Jones I R, Phys. Plasmas, 8, 2549, 2001.
    [8]. Ostrikov K. N., Xu S. and Yu M. Y., J. Appl. Phys, 88, 2268, 2000
    [9]. M. Tsuda, S. Oikawa and K. Saito: J. Chem. Phys. 91 (1989) 6822.
    [10]. Akihisa MATSUDA, Jpn. J. Appl. Phys., Vol. 43, No. 12 (2004).
    [11]. J. Perrin, O. Leroy and M. C. Bordage: Contrib. Plasma Phys. 36
    (1996) 3.

    [12]. S. Shimizu, M. Kondo, and A. Matsuda, J. Appl. Phys. 97, 033522 ,
    2005.
    [13]. Junshuai Li, Jinxiao Wang, Min Yin, Pingqi Gao, Deyan He, Qiang Chen, Yali Li and Hajime Shirai, JOURNAL OF APPLIED PHYSICS 103, 043505, 2008
    [14]. A. Matsuda, Jpn. J. Appl. Phys., Vol. 43, No. 12 (2004)
    [15]. A. Matsuda: J. Non-Cryst. Solids 59&60 (1983) 767.
    [16]. C. C. Tsai, G. B. Anderson, R. Thompson and B. Wacker: J.Non-Cryst. Solids 114 (1989) 151.
    [17]. K. Nakamura, K. Yoshida, S. Takeoka and I. Shimizu: Jpn. J. Appl.
    Phys. 34 (1995) 442.
    [18]. A. Matsuda: Thin Solid Films 337 (1999) 1.

    [1]. Effective repair to ultra-low-k dielectric material .kÈ2.0. by hexamethyldisilazane treatment
    [2]. http://mitghmr.spd.louisville.edu/lutz/resources/sops/sop45.html
    [3]. K.C. Wang and H.L. Hwang, J. Appl. Phys, 77(12):15 June (1995)
    [4]. http://epswww.unm.edu/xrd/xrdbasics.pdf
    [5]. C. R. Brundle, C. A. Evans, S. Wilson, Encyclopaedia of Materials Characterization, Surfaces, Interfaces, Thin Films, Butterworth-Heinemann, Boston, 1992.
    [6]. Dieter K. Schroder, “Semiconductor material and device 37 characterization”, John Wiley & Sons, Inc.

    [1]. J. Perrin and T. Broekhuizen, Appl. Phys. Lett. 50, 433, 1987.
    [2]. A. Matsuda, Jpn. J. Appl. Phys. 43, 7909, 2004.
    [3]. S. Q. Xiao, S. Xu, D. Y. Wei, S. Y. Huang, H. P. Zhou, and Y. Xu, J. Appl. Phys. 108, 113520, 2010.
    [4]. Qijin Cheng, Shuyan Xu, Shiyong Huang, and Kostya (Ken) Ostrikov, Crystal Growth & Design, Vol. 9, No. 6, 2009.
    [5]. Ostrikov, K. ReV. Mod. Phys. 2005, 77, 489.
    [6]. Cheng, Q. J.; Xu, S.; Ostrikov, K. Nanotechnology. 20, 215606, 2009.
    [7]. Mukhopadhyay, S.; Das, C.; Ray, S. J. Phys. D: Appl. Phys. 37, 1736, 2004.
    [8]. H. Kakinuma, M. Mohri, M. Sakamato, and T. Tsuruoka, J. Appl. Phys. 70, 7374, 1991.
    [9]. Junshuai Li, Jinxiao Wang, Min Yin, Pingqi Gao, Deyan He, Qiang Chen, Yali Li, and Hajime Shirai, J. Appl. Phys. 103, 043505, 2008

    [1]. Nihan Kosku and Seiichi Miyazaki.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE