研究生: |
吳晉齊 Wu, Chin-Chi |
---|---|
論文名稱: |
以高密度化學氣相沉積系統製備矽薄膜及分析其參數對矽薄膜的影響 Analysis of the impact of parameters on silicon thin films synthesized by HDPCVD |
指導教授: |
黃惠良
Hwang, Huey-Liang |
口試委員: |
黃惠良
曾百亨 邱福千 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 高電漿密度化學氣相沉積系統 、感應式耦合電漿輔助化學氣相沉積系統 、矽薄膜 |
外文關鍵詞: | HDPCVD, ICPCVD, si thin film |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
We have developed a novel structure which can achieve the efficiency of 17.04%. The structure of the cell is combined of a-Si:H and poly-Si:H of grain size more than 1um with only a pn junction. To fabricate the cell, I will first analyze the parameters to manufacture the poly-Si:H thin film with ICPCVD.
In this thesis, I will use N&K, 4-point probe, SEM, XRD, Raman, XRD and Hall measurement to analyze the crystallinity and concentration of thin films. In the experiment, I will fabricate the films in different power densities and pressures.
We can get the thin film of about 50nm and crystalline fraction of 74.35% with power density of 0.694 W/cm2. Moreover, n-doped thin film of 3.27E19 cm-3 and p-doped of 8.317E16 cm-3 are obtained. We also propose the formation mechanism of uc-Si thin films.
在之前的工作中,我們已經發展出了一個可以達到效率17.04% 的新結構。這個結構是由非晶矽和晶粒大於一微米的多晶矽所組成,且只有一個PN接面。為了完成這個新結構的太陽電池,我將會先分析ICPCVD的參數以製作出多晶矽薄膜。
在這篇論文裡,我將會用到N&K、四點探針、掃描式電子顯微鏡、拉曼光譜儀、X光繞射儀和霍爾量測,去分析薄膜的結晶度和濃度。在這個實驗裡,我將會在不同的功率密度和壓力下去製作出矽薄膜。
實驗結果顯示當功率達到0.694 W/cm2時,我們可以得到晶粒大小約50奈米,結晶度74.35%。而且,我們也製作出N摻雜濃度為3.27E19 cm-3和P摻雜濃度為8.317E16 cm-3。我們也對微晶矽薄膜提出其形成的機制。
[1]. A. E. Becquerel, Comt. Rend. Acad. Sci. 9 (1839) 561.
[2]. D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 25 (1954)
676.
[3] Carlson, Wronski, Appl. Phys. Lett. 28 (1976) 671.
[4]. D. L. Staebler, C. R. Wronski, Appl. Phys. Lett. 31 (1977) 292.
[5]. H. Sonobe, A. Sato, S. Shimizu, T. Matsui, M. Kondo, A. Matsuda,
Thin Sol. Films 502 (2006) 306.
[6]. A. J. LETHA, PhD Thesis, (2009)
[1]. Strahm, B.; Howling, A. A.; Sansonnens, L.; Hollenstein, C. Plasma
Sources Sci. Technol. 16, 80, 2007.
[2]. Biaggi-Labiosa A, Sol´a F, Resto O, Fonseca L F,Gonz´alez-Berr´ıos A, Jes´us J De and Morell G, Nanotechnology 19 225202, 2008.
[3]. Dalal V L, Graves J and Leib J 2004 Appl. Phys. Lett. 85 1413
[4]. Pontoh M., Dalal V. and Gandhi N., ‘Characterization of ECR plasama’, Mater. Res. Soc. Symp. Proc. 715, 2002.
[5]. Kaushal S., Dalal V.L. and Xu J., J. Non-Cryst. Solids, 198-200, 1996.
[6]. H. Kirimura, K. Kubota, E. Takahashi, S. Kishida, K. Ogata, Y. Uraoka, T. Fuyuki, Jpn. J. Appl. Phys. 43, 7929, 2004.
[7]. Xu S, Ostrikov K N, Li Y, Tsakadze E L and Jones I R, Phys. Plasmas, 8, 2549, 2001.
[8]. Ostrikov K. N., Xu S. and Yu M. Y., J. Appl. Phys, 88, 2268, 2000
[9]. M. Tsuda, S. Oikawa and K. Saito: J. Chem. Phys. 91 (1989) 6822.
[10]. Akihisa MATSUDA, Jpn. J. Appl. Phys., Vol. 43, No. 12 (2004).
[11]. J. Perrin, O. Leroy and M. C. Bordage: Contrib. Plasma Phys. 36
(1996) 3.
[12]. S. Shimizu, M. Kondo, and A. Matsuda, J. Appl. Phys. 97, 033522 ,
2005.
[13]. Junshuai Li, Jinxiao Wang, Min Yin, Pingqi Gao, Deyan He, Qiang Chen, Yali Li and Hajime Shirai, JOURNAL OF APPLIED PHYSICS 103, 043505, 2008
[14]. A. Matsuda, Jpn. J. Appl. Phys., Vol. 43, No. 12 (2004)
[15]. A. Matsuda: J. Non-Cryst. Solids 59&60 (1983) 767.
[16]. C. C. Tsai, G. B. Anderson, R. Thompson and B. Wacker: J.Non-Cryst. Solids 114 (1989) 151.
[17]. K. Nakamura, K. Yoshida, S. Takeoka and I. Shimizu: Jpn. J. Appl.
Phys. 34 (1995) 442.
[18]. A. Matsuda: Thin Solid Films 337 (1999) 1.
[1]. Effective repair to ultra-low-k dielectric material .kÈ2.0. by hexamethyldisilazane treatment
[2]. http://mitghmr.spd.louisville.edu/lutz/resources/sops/sop45.html
[3]. K.C. Wang and H.L. Hwang, J. Appl. Phys, 77(12):15 June (1995)
[4]. http://epswww.unm.edu/xrd/xrdbasics.pdf
[5]. C. R. Brundle, C. A. Evans, S. Wilson, Encyclopaedia of Materials Characterization, Surfaces, Interfaces, Thin Films, Butterworth-Heinemann, Boston, 1992.
[6]. Dieter K. Schroder, “Semiconductor material and device 37 characterization”, John Wiley & Sons, Inc.
[1]. J. Perrin and T. Broekhuizen, Appl. Phys. Lett. 50, 433, 1987.
[2]. A. Matsuda, Jpn. J. Appl. Phys. 43, 7909, 2004.
[3]. S. Q. Xiao, S. Xu, D. Y. Wei, S. Y. Huang, H. P. Zhou, and Y. Xu, J. Appl. Phys. 108, 113520, 2010.
[4]. Qijin Cheng, Shuyan Xu, Shiyong Huang, and Kostya (Ken) Ostrikov, Crystal Growth & Design, Vol. 9, No. 6, 2009.
[5]. Ostrikov, K. ReV. Mod. Phys. 2005, 77, 489.
[6]. Cheng, Q. J.; Xu, S.; Ostrikov, K. Nanotechnology. 20, 215606, 2009.
[7]. Mukhopadhyay, S.; Das, C.; Ray, S. J. Phys. D: Appl. Phys. 37, 1736, 2004.
[8]. H. Kakinuma, M. Mohri, M. Sakamato, and T. Tsuruoka, J. Appl. Phys. 70, 7374, 1991.
[9]. Junshuai Li, Jinxiao Wang, Min Yin, Pingqi Gao, Deyan He, Qiang Chen, Yali Li, and Hajime Shirai, J. Appl. Phys. 103, 043505, 2008
[1]. Nihan Kosku and Seiichi Miyazaki.