簡易檢索 / 詳目顯示

研究生: 楊傑名
論文名稱: 串聯醣類吸附模組之功能與特性分析
Functional Characterization of Tandem Repeat Carbohydrate Binding Module
指導教授: 張大慈
口試委員: 孫玉珠
蘇士哲
張大慈
謝興邦
徐祖安
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 109
中文關鍵詞: 醣類吸附模組澱粉吸附區純化
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醣類吸附模組 (carbohydrate-binding modules, CBMs) 為一種可與碳水化合物進行特定的辨識與結合之蛋白區段。米根黴菌 (Rhizopus oryzae) 葡萄糖澱粉酵素 (glucoamylase) 之胺基端具有一澱粉吸附區 (starch-binding domain, RoSBD),隸屬於CBM家族二十一,且對天然澱粉與可溶性多醣類具有高度結合力。RoSBD之立體結構已利用核磁共振與晶體繞射法解析,有八個β-strands並形成兩個β-sheets以及一個傾斜的木桶狀構造。此結構中含有兩個配體結合位:第一個結合位由色胺酸47、酪胺酸83、酪胺酸93、及酪胺酸94組成,第二個結合位則由酪胺酸32、苯丙胺酸58、及酪胺酸67組成。
    CBMs可以單一區域或串聯的形式存在於不同的蛋白當中。一般而言,串聯的CBM較單一之CBM的醣類結合能力高。本實驗室已成功利用大腸桿菌 (E. coli) 之表現系統表現雙聚體RoSBD。為了區分在雙聚體RoSBD中四個關鍵配體結合位之重要性,將其中主要的與配體結合之胺基酸酪胺酸32與色胺酸47分別突變為丙胺酸。本研究發現將雙聚體RoSBD的兩個色胺酸47同時突變後,其對於不可溶澱粉之結合能力明顯地下降。另一方面,利用恆溫滴定熱量計(isothermal titration calorimetry, ITC) 測量雙聚體RoSBD與不同可溶醣類的結合力,其結果顯示將雙聚體RoSBD的兩個酪胺酸32同時突變後會喪失對於可溶醣類的結合能力。此外,雙聚體RoSBD之分子結構可利用另一個已有結構之RoCBM21 (CP90) 為模板預測其結構與功能之相關性。了解雙聚體RoSBD和醣類的結合模式讓我們能更深入地探討串聯之CBM與不同醣類結合之分子機制。
      由於RoSBD在pH 5~8的環境中對於直鏈澱粉的結合能力較高,在pH 10~11的環境則對直鏈澱粉的結合能力明顯地下降,因此具有RoSBD的目標重組蛋白可利用不同pH值的緩衝溶液在直鏈澱粉純化樹脂中純化回收。α-1酸性醣蛋白 (alpha-1-acid glycoprotein, AGP) 是一種急性期反應蛋白,主要在人體中的肝臟細胞中合成。其pI值約在2.8~3.8之間,是高度醣基化的蛋白,醣類約佔其總重量的45%。AGP具有三項主要功能,包括抗發炎、免疫調節以及與藥物結合,其與藥物結合時對對掌性藥物具專一性篩選能力。
      本研究成功地利用酵母菌 (Pichia pastoris KM71) 表現重組蛋白RoSBD-AGP,再利用蛋白質水解酶將重組蛋白RoSBD-AGP中的RoSBD移除並分離,進而得到重組的單一AGP。利用色胺酸螢光遞減測試 (Tryptophan fluorescence quenching assay) 確認由RoSBD純化之重組AGP具有與藥物結合之能力,未來可繼續開發對掌性藥物篩選及分離之新穎材料。


    中文摘要 I Abstract II Acknowledgement III List of Figures VII List of Tables IX List of Appendices X Abbreviation XI Chapter 1 Introduction 1 1.1 Carbohydrate binding modules (CBMs) 1 1.2 Glucoamylase (GA) 4 1.3 Starch binding domain (SBD) 4 1.4 Protein purification 10 1.5 Alpha-1-acid glycoprotein 11 1.6 Research motivation 15 Chapter 2 Materials and Methods 17 2.1 Strains and expression plasmids 17 2.2 Culture media composition 17 2.3 Competent cell preparation 18 2.4 Transformation of E. coli 18 2.5 Pichia pastoris transformation 19 2.6 Colonies confirmation by in situ PCR 19 2.7 Mini-preparation of plasmid 19 2.8 Restriction enzyme digestion 20 2.9 Ligation reaction 20 2.10 Recovery of DNA fragment 21 2.11 Expression of dimeric RoSBD double mutants in E. coli 21 2.12 Expression of RoSBD-AGP in P. pastoris 22 2.13 Purification of dimeric RoSBD (W47A-dm) and dimeric RoSBD (Y32A-dm) by amylose column chromatography 23 2.14 Purification of RoSBD-AGP by amylose column chromatography 23 2.15 Determination of N-linked glycosylation 24 2.16 Enterokinase digestion 24 2.17 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 24 2.18 Western blotting analysis 25 2.19 Bicinchoninic acid (BCA) assay for concentration determination 26 2.20 Depletion isotherms 26 2.21 Thermodynamic measurement of soluble glycan binding capacity of protein samples by isothermal titration calorimetry (ITC) 26 2.22 Quantitative measurement of drug binding capacity of protein samples by fluorescence spectrophotometry 27 Chapter 3 Results 28 3.1 Construction of dimeirc RoSBD double mutants 28 3.2 Small scale expression of dimeirc RoSBD double mutants 29 3.3 Large scale purification of dimeirc RoSBD double mutants by amylose column chromatography 29 3.4 Qualitative measurement of dimeric RoSBD binding to insoluble starch 31 3.5 Quantitative measurement of dimeric RoSBD binding to insoluble starch 32 3.6 Quantitative measurement of dimeric RoSBD binding to soluble glycans 33 3.7 Construction of RoSBD-AGP 35 3.8 Small scale expression of RoSBD-AGP 36 3.9 Large scale purification of RoSBD-AGP by amylose column chromatography 36 3.10 Enterokinase digestion of RoSBD-AGP 37 3.11 Tryptophan fluorescence quenching assay 37 3.12 Effects of N-linked glycosylation on molecular weight of RoSBD-AGP 38 Chapter 4 Discussion 40 4.1 Structural characterization of dimeric RoSBD 40 4.2 Characterization of dimeric RoSBD binding properties 42 4.3 Binding model of dimeric RoSBD 43 4.4 Correlation between CBM arrangement and CBM binding site 44 4.5 Expression of recombinant AGP in P. pastoris 45 4.6 Application of AGP in chiral drug seperation 45 Reference 49 Figures 57 Tables 95 Appendices 104

    1 Guillen, D., Sanchez, S. and Rodriguez-Sanoja, R. Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol. 85, 1241-1249
    2 Bolam, D. N., Ciruela, A., McQueen-Mason, S., Simpson, P., Williamson, M. P., Rixon, J. E., Boraston, A., Hazlewood, G. P. and Gilbert, H. J. (1998) Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J. 331 ( Pt 3), 775-781
    3 Shoseyov, O., Shani, Z. and Levy, I. (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 70, 283-295
    4 Lee, I., Evans, B. R. and Woodward, J. (2000) The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. Ultramicroscopy. 82, 213-221
    5 Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V. and Henrissat, B. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37, D233-238
    6 Chou, W. Y., Chou, W. I., Pai, T. W., Lin, S. C., Jiang, T. Y., Tang, C. Y. and Chang, M. D. (2010) Feature-incorporated alignment based ligand-binding residue prediction for carbohydrate-binding modules. Bioinformatics. 26, 1022-1028
    7 Giardina, T., Gunning, A. P., Juge, N., Faulds, C. B., Furniss, C. S., Svensson, B., Morris, V. J. and Williamson, G. (2001) Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J Mol Biol. 313, 1149-1159
    8 Southall, S. M., Simpson, P. J., Gilbert, H. J., Williamson, G. and Williamson, M. P. (1999) The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett. 447, 58-60
    9 Sorimachi, K., Jacks, A. J., Le Gal-Coeffet, M. F., Williamson, G., Archer, D. B. and Williamson, M. P. (1996) Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol. 259, 970-987
    10 Chou, W. I., Pai, T. W., Liu, S. H., Hsiung, B. K. and Chang, M. D. (2006) The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. The Biochemical journal. 396, 469-477
    11 Boraston, A. B., Healey, M., Klassen, J., Ficko-Blean, E., Lammerts van Bueren, A. and Law, V. (2006) A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem. 281, 587-598
    12 Kamitori, S., Kondo, S., Okuyama, K., Yokota, T., Shimura, Y., Tonozuka, T. and Sakano, Y. (1999) Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 A resolution. J Mol Biol. 287, 907-921
    13 van Bueren, A. L. and Boraston, A. B. (2007) The structural basis of alpha-glucan recognition by a family 41 carbohydrate-binding module from Thermotoga maritima. J Mol Biol. 365, 555-560
    14 Glaring, M. A., Baumann, M. J., Abou Hachem, M., Nakai, H., Nakai, N., Santelia, D., Sigurskjold, B. W., Zeeman, S. C., Blennow, A. and Svensson, B. (2011) Starch-binding domains in the CBM45 family--low-affinity domains from glucan, water dikinase and alpha-amylase involved in plastidial starch metabolism. The FEBS journal. 278, 1175-1185
    15 McBride, A., Ghilagaber, S., Nikolaev, A. and Hardie, D. G. (2009) The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab. 9, 23-34
    16 Valdez, H. A., Busi, M. V., Wayllace, N. Z., Parisi, G., Ugalde, R. A. and Gomez-Casati, D. F. (2008) Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Biochemistry. 47, 3026-3032
    17 Martens, E. C., Koropatkin, N. M., Smith, T. J. and Gordon, J. I. (2009) Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem. 284, 24673-24677
    18 Moser, F., Irwin, D., Chen, S. and Wilson, D. B. (2008) Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng. 100, 1066-1077
    19 Barral, P., Suarez, C., Batanero, E., Alfonso, C., Alche Jde, D., Rodriguez-Garcia, M. I., Villalba, M., Rivas, G. and Rodriguez, R. (2005) An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination. Biochem J. 390, 77-84
    20 Vaaje-Kolstad, G., Horn, S. J., van Aalten, D. M., Synstad, B. and Eijsink, V. G. (2005) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem. 280, 28492-28497
    21 Kawazu, T., Nakanishi, Y., Uozumi, N., Sasaki, T., Yamagata, H., Tsukagoshi, N. and Udaka, S. (1987) Cloning and nucleotide sequence of the gene coding for enzymatically active fragments of the Bacillus polymyxa beta-amylase. J Bacteriol. 169, 1564-1570
    22 Boraston, A. B., Ficko-Blean, E. and Healey, M. (2007) Carbohydrate recognition by a large sialidase toxin from Clostridium perfringens. Biochemistry. 46, 11352-11360
    23 Ito, Y., Tomita, T., Roy, N., Nakano, A., Sugawara-Tomita, N., Watanabe, S., Okai, N., Abe, N. and Kamio, Y. (2003) Cloning, expression, and cell surface localization of Paenibacillus sp. strain W-61 xylanase 5, a multidomain xylanase. Appl Environ Microbiol. 69, 6969-6978
    24 Guillen, D., Santiago, M., Linares, L., Perez, R., Morlon, J., Ruiz, B., Sanchez, S. and Rodriguez-Sanoja, R. (2007) Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains. Appl Environ Microbiol. 73, 3833-3837
    25 Boraston, A. B., Healey, M., Klassen, J., Ficko-Blean, E., Lammerts van Bueren, A. and Law, V. (2006) A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem. 281, 587-598
    26 Sauer, J., Sigurskjold, B. W., Christensen, U., Frandsen, T. P., Mirgorodskaya, E., Harrison, M., Roepstorff, P. and Svensson, B. (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta. 1543, 275-293
    27 Marin-Navarro, J. and Polaina, J. (2011) Glucoamylases: structural and biotechnological aspects. Appl Microbiol Biotechnol. 89, 1267-1273
    28 Sorimachi, K., Le Gal-Coeffet, M. F., Williamson, G., Archer, D. B. and Williamson, M. P. (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure. 5, 647-661
    29 Lin, S. C., Liu, W. T., Liu, S. H., Chou, W. I., Hsiung, B. K., Lin, I. P., Sheu, C. C. and Dah-Tsyr Chang, M. (2007) Role of the linker region in the expression of Rhizopus oryzae glucoamylase. BMC Biochem. 8, 9
    30 Chou, W. I., Pai, T. W., Liu, S. H., Hsiung, B. K. and Chang, M. D. (2006) The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J. 396, 469-477
    31 Henrissat, B. (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 280 ( Pt 2), 309-316
    32 Ashikari, T., Nakamura, N., Tanaka, Y., Kiuchi, N., Shibano, Y., Tanaka, T., Amachi, T. and Yoshizumi, H. (1986) Rhizopus Raw-Starch-Degrading Glucoamylase: Its Cloning and Expression in Yeast. Agricultural and Biological Chemistry. 50, 957-964
    33 Houghton-Larsen, J. and Pedersen, P. A. (2003) Cloning and characterisation of a glucoamylase gene (GlaM) from the dimorphic zygomycete Mucor circinelloides. Appl Microbiol Biotechnol. 62, 210-217
    34 Bui, D. M., Kunze, I., Förster1, S., Wartmann, T., Horstmann, C., Manteuffel, R. and Kunze, G. (1996) Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae Applied Microbiology and Biotechnology. 44, 610-619
    35 Fukuda, M., Niwa, S., Hiramatsu, K., Hayashida, S., Saitoh, O., Kameyama, T., Nakagome, K., Iwanami, A., Sasaki, T. and Itoh, K. (1989) Psychological intervention can partly alter P300-amplitude abnormalities in schizophrenics. Jpn J Psychiatry Neurol. 43, 633-638
    36 Rodriguez-Sanoja, R., Oviedo, N. and Sanchez, S. (2005) Microbial starch-binding domain. Curr Opin Microbiol. 8, 260-267
    37 Tung, J. Y., Chang, M. D., Chou, W. I., Liu, Y. Y., Yeh, Y. H., Chang, F. Y., Lin, S. C., Qiu, Z. L. and Sun, Y. J. (2008) Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J. 416, 27-36
    38 Boraston, A. B., Bolam, D. N., Gilbert, H. J. and Davies, G. J. (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 382, 769-781
    39 Thorleifsson, G., Holm, H., Edvardsson, V., Walters, G. B., Styrkarsdottir, U., Gudbjartsson, D. F., Sulem, P., Halldorsson, B. V., de Vegt, F., d'Ancona, F. C., den Heijer, M., Franzson, L., Christiansen, C., Alexandersen, P., Rafnar, T., Kristjansson, K., Sigurdsson, G., Kiemeney, L. A., Bodvarsson, M., Indridason, O. S., Palsson, R., Kong, A., Thorsteinsdottir, U. and Stefansson, K. (2009) Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet. 41, 926-930
    40 Simpson, P. J., Xie, H., Bolam, D. N., Gilbert, H. J. and Williamson, M. P. (2000) The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. J Biol Chem. 275, 41137-41142
    41 Guan, L., Hu, Y. and Kaback, H. R. (2003) Aromatic stacking in the sugar binding site of the lactose permease. Biochemistry. 42, 1377-1382
    42 Ponyi, T., Szabo, L., Nagy, T., Orosz, L., Simpson, P. J., Williamson, M. P. and Gilbert, H. J. (2000) Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands. Biochemistry. 39, 985-991
    43 Pell, G., Williamson, M. P., Walters, C., Du, H., Gilbert, H. J. and Bolam, D. N. (2003) Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry. 42, 9316-9323
    44 Xie, H., Bolam, D. N., Nagy, T., Szabo, L., Cooper, A., Simpson, P. J., Lakey, J. H., Williamson, M. P. and Gilbert, H. J. (2001) Role of hydrogen bonding in the interaction between a xylan binding module and xylan. Biochemistry. 40, 5700-5707
    45 Chou, W. Y., Pai, T. W., Jiang, T. Y., Chou, W. I., Tang, C. Y. and Chang, M. D. (2011) Hydrophilic aromatic residue and in silico structure for carbohydrate binding module. PloS one. 6, e24814
    46 Liu, Y. N., Lai, Y. T., Chou, W. I., Chang, M. D. and Lyu, P. C. (2007) Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem. J. 403, 21-30
    47 Tung, J. Y., Chang, M. D., Chou, W. I., Liu, Y. Y., Yeh, Y. H., Chang, F. Y., Lin, S. C., Qiu, Z. L. and Sun, Y. J. (2008) Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem. J. 416, 27-36
    48 Jiang, T. Y., Ci, Y. P., Chou, W. I., Lee, Y. C., Sun, Y. J., Chou, W. Y., Li, K. M. and Chang, M. D. (2012) Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose. PloS one. 7, e41131
    49 Stephen, P., Cheng, K. C. and Lyu, P. C. (2012) Crystal structure of circular permuted RoCBM21 (CP90): dimerisation and proximity of binding sites. PloS one. 7, e50488
    50 Hedhammar, M. and Hober, S. (2007) Z(basic)--a novel purification tag for efficient protein recovery. J Chromatogr A. 1161, 22-28
    51 Murphy, M. B. and Doyle, S. A. (2005) High-throughput purification of hexahistidine-tagged proteins expressed in E. coli. Methods Mol Biol. 310, 123-130
    52 Smith, D. B. and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 67, 31-40
    53 Terpe, K. (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 60, 523-533
    54 Lin, S. C., Lin, I. P., Chou, W. I., Hsieh, C. A., Liu, S. H., Huang, R. Y., Sheu, C. C. and Chang, M. D. (2009) CBM21 starch-binding domain: a new purification tag for recombinant protein engineering. Protein expression and purification. 65, 261-266
    55 Schmid, K., Nimerg, R. B., Kimura, A., Yamaguchi, H. and Binette, J. P. (1977) The carbohydrate units of human plasma alpha1-acid glycoprotein. Biochim Biophys Acta. 492, 291-302
    56 Schonfeld, D. L., Ravelli, R. B., Mueller, U. and Skerra, A. (2008) The 1.8-A crystal structure of alpha1-acid glycoprotein (Orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin. Journal of molecular biology. 384, 393-405
    57 Otagiri, M. (2005) A molecular functional study on the interactions of drugs with plasma proteins. Drug metabolism and pharmacokinetics. 20, 309-323
    58 Kushner, I. (1982) The phenomenon of the acute phase response. Ann N Y Acad Sci. 389, 39-48
    59 Fey, G. H. and Fuller, G. M. (1987) Regulation of acute phase gene expression by inflammatory mediators. Mol Biol Med. 4, 323-338
    60 Schmid, K., Kaufmann, H., Isemura, S., Bauer, F., Emura, J., Motoyama, T., Ishiguro, M. and Nanno, S. (1973) Structure of 1 -acid glycoprotein. The complete amino acid sequence, multiple amino acid substitutions, and homology with the immunoglobulins. Biochemistry. 12, 2711-2724
    61 Albani, F., Riva, R., Contin, M. and Baruzzi, A. (1984) Stereoselective binding of propranolol enantiomers to human alpha 1-acid glycoprotein and human plasma. Br J Clin Pharmacol. 18, 244-246
    62 Flower, D. R. (1996) The lipocalin protein family: structure and function. The Biochemical journal. 318 ( Pt 1), 1-14
    63 Fournier, T., Medjoubi, N. N. and Porquet, D. (2000) Alpha-1-acid glycoprotein. Biochimica et biophysica acta. 1482, 157-171
    64 Hochepied, T., Berger, F. G., Baumann, H. and Libert, C. (2003) Alpha(1)-acid glycoprotein: an acute phase protein with inflammatory and immunomodulating properties. Cytokine & growth factor reviews. 14, 25-34
    65 Kremer, J. M., Wilting, J. and Janssen, L. H. (1988) Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacological reviews. 40, 1-47
    66 Ojala, P. J., Hermansson, M., Tolvanen, M., Polvinen, K., Hirvonen, T., Impola, U., Jauhiainen, M., Somerharju, P. and Parkkinen, J. (2006) Identification of alpha-1 acid glycoprotein as a lysophospholipid binding protein: a complementary role to albumin in the scavenging of lysophosphatidylcholine. Biochemistry. 45, 14021-14031
    67 Voulgari, F., Cummins, P., Gardecki, T. I., Beeching, N. J., Stone, P. C. and Stuart, J. (1982) Serum levels of acute phase and cardiac proteins after myocardial infarction, surgery, and infection. British heart journal. 48, 352-356
    68 Kristensen, C. B. (1983) Imipramine serum protein binding in healthy subjects. Clinical pharmacology and therapeutics. 34, 689-694
    69 Eap, C. B., Fischer, J. F. and Baumann, P. (1991) Variations in relative concentrations of variants of human alpha 1-acid glycoprotein after acute-phase conditions. Clinica chimica acta; international journal of clinical chemistry. 203, 379-385
    70 Greenblatt, D. J., Sellers, E. M. and Koch-Weser, J. (1982) Importance of protein binding for the interpretation of serum or plasma drug concentrations. Journal of clinical pharmacology. 22, 259-263
    71 Merrikin, D. J., Briant, J. and Rolinson, G. N. (1983) Effect of protein binding on antibiotic activity in vivo. The Journal of antimicrobial chemotherapy. 11, 233-238
    72 Wise, R. (1985) The relevance of pharmacokinetics to in-vitro models: protein binding--does it matter? The Journal of antimicrobial chemotherapy. 15 Suppl A, 77-83
    73 Wise, R. (1986) The clinical relevance of protein binding and tissue concentrations in antimicrobial therapy. Clinical pharmacokinetics. 11, 470-482
    74 Dudley, M. N., Blaser, J., Gilbert, D. and Zinner, S. H. (1990) Significance of "extravascular" protein binding for antimicrobial pharmacodynamics in an in vitro capillary model of infection. Antimicrobial agents and chemotherapy. 34, 98-101
    75 Lee, B. L., Sachdeva, M. and Chambers, H. F. (1991) Effect of protein binding of daptomycin on MIC and antibacterial activity. Antimicrobial agents and chemotherapy. 35, 2505-2508
    76 Nix, D. E., Matthias, K. R. and Ferguson, E. C. (2004) Effect of ertapenem protein binding on killing of bacteria. Antimicrobial agents and chemotherapy. 48, 3419-3424
    77 Schmidt, S., Rock, K., Sahre, M., Burkhardt, O., Brunner, M., Lobmeyer, M. T. and Derendorf, H. (2008) Effect of protein binding on the pharmacological activity of highly bound antibiotics. Antimicrobial agents and chemotherapy. 52, 3994-4000
    78 Enquist, M. and Hermansson, J. (1990) Separation of the enantiomers of beta-receptor blocking agents and other cationic drugs using a CHIRAL-AGP column. Binding properties and characterization of immobilized alpha 1-acid glycoprotein. Journal of chromatography. 519, 285-298
    79 Hermansson, J. and Grahn, A. (1994) Determination of drugs by direct injection of plasma into a biocompatible extraction column based on a protein-entrapped hydrophobic phase. Journal of chromatography. A. 660, 119-129
    80 van Bueren, A. L., Higgins, M., Wang, D., Burke, R. D. and Boraston, A. B. (2007) Identification and structural basis of binding to host lung glycogen by streptococcal virulence factors. Nature structural & molecular biology. 14, 76-84
    81 Sun, D. L., Huang, S. D., Wu, P. S., Li, J., Ye, Y. J. and Jiang, H. D. (2010) Stereoselective protein binding of tetrahydropalmatine enantiomers in human plasma, HSA, and AGP, but not in rat plasma. Chirality. 22, 618-623
    82 Hong, Y., Tang, Y. and Zeng, S. (2009) Enantioselective plasma protein binding of propafenone: mechanism, drug interaction, and species difference. Chirality. 21, 692-698
    83 Zhu, C. J. and Zhang, J. T. (2009) Stereoselective plasma protein binding and target tissue distribution of clausenamide enantiomers in rats. Chirality. 21, 402-406
    84 Maddi, S., Yamsani, M. R., Seeling, A. and Scriba, G. K. (2010) Stereoselective plasma protein binding of amlodipine. Chirality. 22, 262-266
    85 Matsunaga, H. and Haginaka, J. (2006) Investigation of chiral recognition mechanism on chicken alpha(1)-acid glycoprotein using separation system. Journal of chromatography. A. 1106, 124-130
    86 Michishita, T., Franco, P. and Zhang, T. (2010) New approaches of LC-MS compatible method development on alpha(1)-acid glycoprotein-based stationary phase for resolution of enantiomers by HPLC. Journal of separation science. 33, 3627-3637
    87 Ci, Y.-P. (2011) Different Roles of Two Ligand Binding Sites of Rhizopus oryzae Starch Binding Domain for Protein-Glycan Interaction. Master thesis
    88 Huang, H.-T. (2012) An Interaction Model between Glycans and Starch Binding Domain of Rhizopus oryzae Glucoamylase. Master thisis. 84, 2299-2304

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE