簡易檢索 / 詳目顯示

研究生: 陳世昌
Shih-Chang Chen
論文名稱: Narrowband Interference Detection for OFDM Based Cognitive Radios
Narrowband Interference Detection for OFDM Based Cognitive Radios
指導教授: 黃建華
Chien-Hwa Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 34
中文關鍵詞: 偵測感知無線電窄頻干擾源
外文關鍵詞: Detection, Cognitive Radio, Narrow Band Interference
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於超寬頻 (Ultra Wide Band, UWB) 它驚人的高速數據傳輸率和

    優異低功耗以及低干擾的特性,已成為無線個人區域網路(Wireless Personal Area

    Network, WPAN)最受歡迎的技術之一。在眾多UWB信號中的最受歡迎的標準為

    多頻帶-正交分頻多工系統(Multi-Band Orthogonal Frequency Division

    Multiplexing, MB-OFDM) ,本論文將致力於此系統架構下對可能同時存在之受

    保護通訊系統訊號的偵測技術。

    在這篇論文吾人的主要目標為提出一有效的方法為在沒有執照的頻率使用發射

    系統和已取得合法使用頻譜的系統的共存方式。為整個頻譜資源更合理有效的利

    用,感知(Cognitive)的概念是一個很好的解決方法。感知的概念在於可以靈活地

    意識到環境的變化以及隨時改變傳輸參數以適應環境,在這篇論文裡的吾人的目

    標是設計最合適的窄頻干擾源(Narrow Band Interference, NBI) 檢測器(Detector)

    在不同的傳輸環境下。根據我們所得到窄頻干擾源的傳輸參數多寡,我們利用

    Neyman-Pearson理論來設計最合適的窄頻干擾源檢測器,這就是感知系統的概

    念。本篇論文大致把我們的窄頻干擾源訊息分類作為完全知道窄頻干擾源的傳輸

    參數除了它強度,以及不完全知道窄頻干擾源的傳輸參數。我們將更進一步以得

    知窄頻干擾源的位置與否來進行探討。

    吾人將按以下模式組織這篇論文︰首先介紹設計窄頻干擾源檢測器需要的

    背景知識,包括Neyman-Pearson定理和GLRT檢測定理。在第3章我們開始提

    出合適檢測器基於可得到的關於窄頻干擾源訊息的多寡,以所謂感知系統的概念

    來設計。提出合適當下環境的檢測器之後,進行這個檢測器的性能分析。然後我

    們進行大量的電腦模擬以證實分析的準確。


    Spectrum sensing in cognitive radio (CR) is an emerging technology
    which enables coexistence of systems; thus, the precious resources
    of frequency bands can be utilized more efficiently. In this paper,
    narrowband interference (NBI) detection in an orthogonal frequency
    division multiplexing (OFDM) based cognitive radio system is
    addressed. According to how much available information about NBI is
    known to the detector, several detection algorithms based on the
    Neyman-Pearson philosophy are proposed. In specific, the amount of
    receiver's knowledge about NBI is classified into categories
    according to whether or not a) the received power, b) the occupied
    frequency bands, and c) the second moment descriptions of NBI are
    available. In dealing with unknown parameters in the hypothesis
    testing, generalized likelihood ratio test (GLRT) is employed.
    Performance analysis is carried out for all proposed algorithms in
    terms of the receiver operating characteristic (ROC). Extensive
    computer simulations are run to verify the accuracy of the analysis.

    1 Introduction 1 1.1 Significance of the Research . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contributions of the Research . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Detection Theory in Signal Processing 4 2.1 Hypothesis Testing Based on Neyman-Pearson Theorem . . . . . . . . . 5 2.2 GLRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Narrowband Interference Detection for OFDM Based Cognitive Ra- dios 9 3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 Tonal Interference . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.2 Autoregressive Interference . . . . . . . . . . . . . . . . . . . . . 11 3.2 Independent Detection At Each Subcarrier: Random Signal Detection with Unknown Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Joint Detection of All Sub-carriers: Model Change Detection . . . . . . 14 3.3.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Conclusion and Future work 31 4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Reference : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

    [1] FCC, ET Docket No. 03-322. Notice of Proposed Rule Making and Order, December
    2003.
    [2] FCC, ET Docket No. 03-108. Cognitive Radio Technologies Proceeding (CRTP),
    December 2003.
    [3] Joseph Mitola III and G. Q. Maguire Jr., \Cognitive Radio: Making Software
    Radios More Personal," IEEE Personal Communications, vol. 6, no. 4, pp. 13{18,
    Aug. 1999.
    [4] Shridhar Mubaraq Mishra Danijela Cabric and Robert W. Brodersen, \Implemen-
    tation issues in spectrum sensing for cognitive radios," Proceedings of 38th An-
    nual Asilomar Conference on Signals, Systems and Computers, Paci‾c Grove, Calif,
    USA, Nov. 2004.
    [5] Timo A. Weiss and U. Karlsruhe Friedrich K. Jondral, \Spectrum Polling: An
    Innovative Strategy for the Enhancement of Spectrum E±ciency," IEEE Radio
    Communications, pp. S8{S14, Mar. 2004.
    [6] Mehmet C. Vuran Ian F. Akyildiz, Won-Yeol Lee and Shantidev Mohanty, \Next
    generation/dynamic spectrum access/cognitive radio wireless networks: a survey,"
    Comput. Networks (Elsevier), vol. 50, pp. 2127{2159.
    [7] Hirohisa Yamaguchi, \Active Interference Cancellation Technique For MB-OFDM
    cognitive Radio," 34th European Microwave Conference-Amsterdam, pp. 1105{1108,
    2004.
    [8] H. V. Poor and Xiaodong Wang, \Code-aided interference suppression for
    DS/CDMA communications{ Part I:Interference suppression capability," IEEE
    Trans. Commun., vol. 45, pp. 1101{1111, Sept. 1997.
    [9] Steven M. Kay, Fundamentals of Statistical Signal Procssing: Detection Theory,
    vol. 2, Prentice Hall.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE