研究生: |
蔣孟勳 |
---|---|
論文名稱: |
在碳化矽表面上成長石墨烯並藉由角解析光電子能譜量測能帶結構 Graphene growth on SiC surface and characterized by angle-resolved photoemission spectroscopy |
指導教授: | 崔古鼎 |
口試委員: |
陸大安
鄭弘泰 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 石墨烯 、光電子能譜 |
外文關鍵詞: | graphene, ARPES |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯是由碳原子以蜂巢狀排列而成的二維度材料。由於具備高載子遷移率、高晶格的品質和經濟的價值,石墨烯被認為是可運用在下一世代設備裡面的低尺度材料。在本論文中,我成功在3.5°傾角的6H碳化矽上成長出石墨烯,並利用角解析光電子能譜量測其電子結構。我們成功成長出單層、雙層及多層的石墨烯,而他們的電子能帶結構也能被TB模型良好的擬合。成長石墨烯最好的條件是在至少1400°C下加熱碳化矽基板。在我們的樣品上,因為溫度的不均勻加熱,使得不同厚度的石墨烯以小區域的分佈在表面。在未來會以長方形的基底來改善溫度梯度造成的影響。而在有傾角的碳化矽上長出的石墨烯,與先前在無傾角碳化矽上長出的石墨烯的研究,有相似的電子結構。但因為區域過小限制了解析度,因此不足以辨別是否有不同的電子結構。
Graphene consists of a single layer of carbon atoms packed in a 2D honeycomb structure. It is highly promising as a low-dimensional material for next generation devices owing to its high carrier mobility, high crystal quality and economic price. In this thesis, I grow graphene on 6H-SiC with 3.5° miscut and use the Angle-resolved photoemission spectroscopy (ARPES) to probe the electronic structure of materials. We have successfully grown SLG, BLG and few layer graphene and the band structure can be fitted well by a tight-binding model. The best condition to grow graphene is to heat substrates at 1400 °C more than one hour. In our samples, different thickness of graphene with small domains exists on the wafer due to non-uniform temperature distribution. A rectangular shape of SiC substrate will be used to reduce the temperature gradient problem in the future. The band structure of graphene grown on miscut SiC substrate is similar to previous studies on on-axis SiC in the literature. However, small ordered domain of graphene sample limits the resolution to distinguish the change of electronic structure between on-axis and miscut samples.
Chapter 1
[1] A.K. Geim and K.S. Novoselov, “The rise of graphene”, Nature Materials. 6, 183 (2007).
[2] F. A. Lindemann, Z. The calculation of molecular vibration frequencies. Phys. 11, 609, (1910).
[3] Peierls, R. E. Quelques proprietes typiques des corpses solides. Ann. I. H. Poincare 5, 177-222 (1935).
[4] Landau, L. D. Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion, 11, 26-35 (1937).
[5] K.V. Emstev et al., Toward wafer-size graphene layers by atmospheric pressure graphitzation of silicon carbide. Nature Materials 8, 203 (2009).
[6] I. Pletikosic et al., Dirac cone and minigaps for grapheme on Ir(111). Phys. Rev. Lett. 102, 056808 (2009).
[7] Paolo Lacovig et al., Growth of dome-shaphe carbon nanoislands on Ir(111):the intermediate between carbidic and quasi-free-standing grapheme. Phys. Rev. Lett. 103, 166101 (2009).
[8] J. Coraux et al., Growth of grapheme on Ir(111). New Journal of Physics 11, 023006 (2009).
[9] P.W. Sutter et al., Epitaxial graphene on ruthenium. Nature Materials 7, 406 (2008).
[10] P. Sutter et al., Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett. 9, 2654 (2009).
[11] C. Enderlein et al., The formation of an energy gap in grapheme on ruthenium by controlling the interface. New Journal of Physics 12, 033014 (2010).
[12] A. Varykhalov and O. Rader, Graphene grown on Co(0001) films and islands: Electronic structure and its precise magnetization dependence. Phys. Rev. B 80, 035437 (2009).
[13] Yu. S. Dedkov et al., Rashba Effect in the Graphene/Ni(111) System. Phys. Rev. Lett. 100, 107602 (2008).
[14] A. Gruneis et al., Dynamics of grapheme growth on a metal surface: a time-dependent photoemission study. New Journal of Physics 11, 073050 (2009).
Chapter 2
[1] Stefan H fner, Photoelectron Spectroscopy. Springer.
[2] Dominic, A. Ricci, Photoemission studies of interface effect on thin films properties. Ph. D. thesism, University of Illinois at Urbana-Champaign (2006)
[3] Damascelli, A. Probing the electronic structure of complex systems by ARPES. Phys. Scr. 109, 61-74 (2004)
[4] National Synchrotron Radiation Research Center, Introduction to synchrotron radiation. Website of National Sunchrotron Radiation Research Center.
[5] Hans Luth, Surface ansd Interfaces on solid Material, Springer.
Chapter 3
[1] U. Starke, J. Bernhardt, J. Schardt, and K. Heinz Lehrstuhl f¨ur Festk¨orperphysik. SiC surface reconstruction: relevancy of atomic structure for growth technilogy. Surface Review and Letters, 1129-1141 (1999)
[2] N. W. Jepps and T. F. Page. Prog Cryst. Growth Charact. 7. 259 (1983)
[3] Adrian R. Powell and Larry B. Rowland. SiC materials—progress, status, and potential roadblocks. IEEE, 90 942-955 (2002)
[4] R. A. Andrievski. Synthesis, structure and properties of nanosized silicon carbide. Rev. Adv. Mater. Sci. 22 1-20 (2009)
[5] S. Nie, PhD Thesis, Temperature-dependence of epitaxial graphene formation on SiC(0001). Department of Physics, Carnegie Mellon University (2007)
[6] W. Norimatsu, M.Kusunoki. Formation process of graphene on SiC(0001). Phys. E 42 691-694 (2010)
[7] Ki-jeong Kim, Hangil Lee, J-H Choi, H-K Lee, T-H Kang, B Kim and Sehun Kim. Temperature dependent structural changes of graphene layers on 6H-SiC(0001) surfaces. J. Phys. Condens. Matter 20 225017 (2008)
[8] Zhenhua Ni, Yingying Wang, Ting Yu, and Zexiang Shen. Raman spectroscopy and imaging of graphene. Nano Res. 1 273- 291(2008)
[9] K. V. Emtsev, Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008)
Chapter 4
[1] Partoens, B. and Peeters, F. M. From graphene to graphite: electronic structure around the K point, Phys. Rev. B 74, 075404 (2006).
[2] C.-M. Cheng et al. Anomalous spectral features of a neutral bilayer graphene , in preparation.
[3] Shirley, E. L., Terminello, L. J., Santoni, A. & Himpsel, F. J. Brillouin-zone- selection effect in graphite photoelectron angular distributions. Phys. Rev. B 51, 13614-13622 (1995).
[4] Zhou, S.Y., Gweon, G. H., & Lanzara, A. Low energy excitations in graphite: The role of dimensionality and lattice defects, Ann. Phys. 321, 1730-1746 (2006).
[5] Zhou, S.Y., Gweon, G. H., & Lanzara, Substrate-induced bandgap opening in epitaxial graphene. Nature material. 6, 770 - 775 (2007).