簡易檢索 / 詳目顯示

研究生: 蒲宜謙
Pu, Yi-Cian
論文名稱: 在邊界運算下有效率的模組配置演算法
An Efficient Module Deployment Algorithm in Edge Computing
指導教授: 許健平
Sheu, Jang-Ping
口試委員: 蔡明哲
Tsai, Ming-Jer
韓永楷
Hon, Wing-Kai
徐正炘
Hsu, Cheng-Hsin
學位類別: 碩士
Master
系所名稱:
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 30
中文關鍵詞: 邊界運算模組配置整數非線性規劃問題頻寬保證
外文關鍵詞: Edge Computing, Module Deployment, Integer Nonlinear Programming (INLP), Bandwidth Guarantees
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 邊界運算將資料的計算和儲存單元移動到接近資料來源的地方,因此邊界運算可以預先處理資料以減少傳送到雲端資料中心的資料量並降低雲端的負載。在邊界運算中,虛擬模組的配置是一個很重要的議題,因為模組的配置對整個系統的運作效能和硬體資源的使用率有很大的影響。在本篇論文中,我們探討在邊界運算平台中的模組配置問題,我們將此問題公式化成一整數的非線性規劃問題,目標是最大化滿足使用者的需求,而此問題會考慮到裝置的頻寬和儲存限制。由於此問題屬於NP-hard的問題,我們提出一個能在多項式時間內得到解決的演算法,此演算法基於鬆弛(Relaxation)和化整(Rounding)的技巧來解決此規劃問題。根據模擬結果顯示,我們的演算法相較於其他方法能滿足更多的使用者需求。


    Edge computing refers to data storage and processing at the edge of network instead of cloud data centers. In edge computing, user data can be preprocessed to reduce the network traffic and load of the cloud system. Module deployment scheme is vital in edge computing since it has a significant effect on the performance and the resource utilization of the edge computing system. We formulate the module deployment as an integer nonlinear programming problem. Our objective is to maximize satisfied user requests under the constraints of limited communication bandwidth and storage capacity of devices where the modules are deployed. Since the optimization problem is NP-hard, we propose a polynomial time algorithm based on relaxation and rounding techniques to solve this problem. The simulation results show that our algorithm satisfies more user requests than other benchmark algorithms.

    I. Introduction 1 II. Related Work 3 III. Bandwidth Guaranteed Module Deployment Algorithm (BMDA) 6 3.1 Problem Formulation 6 3.2 LP Relaxation 9 3.3 Algorithm BMDA 10 3.3.1 Rounding Method 12 3.3.2 Time Complexity Analysis 16 IV. Performance Evaluation 18 4.1 Simulation Environment 18 4.2 Simulation Results 19 V. Conclusion 28 References 29

    [1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and Challenges,” IEEE Internet of Things Journal, Vol. 3, No. 5, pp. 637-646, Oct. 2016.
    [2] O. Salman, I. Elhajj, A. Kayssi, and A. Chehab, “Edge Computing Enabling the Internet of Things,” in Proceedings of IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 603–608, Milan, Italy, Dec. 2015.
    [3] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G. Rabbani, Q. Zhang, and M. F. Zhani, “Data Center Network Virtualization: A Survey,” IEEE Communications Surveys & Tutorials, Vol. 15, No. 2, pp. 909-928, Sep. 2012.
    [4] A. Ahmed and E. Ahmed, “A Survey on Mobile Edge Computing,” in Proceedings of IEEE 10th International Conference on Intelligent Systems and Control (ISCO), pp. 1-8, Coimbatore, India, Jan. 2016.
    [5] R. Cziva and D. P. Pezaros, “Container Network Functions: Bringing NFV to the Network Edge,” IEEE Communications Magazine, Vol. 55, No. 6, pp. 24-31, Jun. 2017.
    [6] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, “Container-as-a-Service at the Edge: Trade-off between Energy Efficiency and Service Availability at Fog Nano Data Centers,” IEEE Wireless Communications, Vol. 24, No. 3, pp. 48-56, Jun. 2017.
    [7] R. Morabito, “Virtualization on Internet of Things Edge Devices with Container Technologies: A Performance Evaluation,” IEEE Access, Vol. 5, pp. 8835-8850, May. 2017.
    [8] F. Ramalho and A. Neto, “Virtualization at the Network Edge: A Performance Comparison,” in Proceedings of IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1-6, Coimbra, Portugal, Jun. 2016.
    [9] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Koldehofe, “Mobile Fog: A Programming Model for Large-scale Applications on the Internet of Things,” in Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing, pp. 15–20, Hong Kong, China, Aug. 2013.
    [10] D. F. Willis, A. Dasgupta, and S. Banerjee, “ParaDrop: A Multi-tenant Platform for Dynamically Installed Third Party Services on Home Gateways,” in Proceedings of the 2014 ACM SIGCOMM Workshop on Distributed Cloud Computing, pp. 43-44, Chicago, Illinois, USA, Aug. 2014.
    [11] K. Katsalis, T. G. Papaioannou, N. Nikaein, and L. Tassiulas, “SLA-Driven VM Scheduling in Mobile Edge Computing,” in Proceedings of IEEE 9th International Conference on Cloud Computing, pp. 750-757, San Francisco, CA, USA, Jul. 2016.
    [12] H.-J. Hong, P.-H. Tsai, and C.-H. Hsu, “Dynamic Module Deployment in a Fog Computing Platform,” in Proceedings of IEEE 18th Asia-Pacific Network Operations and Management Symposium, pp. 1-6, Kanazawa, Japan, Oct. 2016.
    [13] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive Computing, Vol. 8, No. 4, pp. 14-23, Oct. 2009.
    [14] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts, Applications and Issues,” in Proceedings of the 2015 Workshop on Mobile Big Data, ACM, pp. 37-42, Hangzhou, China, Jun. 2015.
    [15] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang, “Secondnet: A Data Center Network Virtualization Architecture with Bandwidth Guarantees,” in Proceedings of the 6th International Conference, ACM, No. 15, Philadelphia, Pennsylvania, Nov. 2010.
    [16] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and J. E. van der Merive, “A Flexible Model for Resource Management in Virtual Private Networks,” in Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication, ACM, pp. 95-108, Massachusetts, USA, Aug. 1999.
    [17] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics of Data Centers in the Wild,” in Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 267-280, Melbourne, Australia, Nov. 2010.
    [18] M. G. Lagoudakis, “The 0–1 Knapsack Problem An Introductory Survey,” The Center for Advanced Computer Studies, University of Southwestern Louisiana, 1996
    [19] CPLEX. Available: https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
    [20] D. A. Spielman and S.-H. Teng, “Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time,” Journal of the ACM, Vol. 51, No. 3, pp. 385-463, May. 2004.
    [21] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data Center Traffic Characteristics,” ACM SIGCOMM Computer Communication Review, Vol. 40, No. 1, pp. 92–99, Jan. 2010.

    QR CODE