簡易檢索 / 詳目顯示

研究生: 顏啟洋
Yen,Chi-Yang.
論文名稱: 異硫氰酸熒光素、其化學標記的纖維素和熒光素鈉鹽在甲醇、乙醇和水溶液中的熒光特性
Fluorescent properties of fluorescein isothiocyanate, its chemically labeled cellulose, and fluorescein sodium salt in methanol, ethanol, and aqueous solutions
指導教授: 大江昌人
Oh-e, Masahito
口試委員: 太田信廣
Ohta, Nobuhiro
潘犀靈
Pan, Ci-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 74
中文關鍵詞: 纖維素螢光螢光素輻射衰退非輻射衰退量子產率
外文關鍵詞: Cellulose, fluorescence, fluorescein, radiative decay, nonradiative decay, quantum yield
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人們正在積極研究利用可再生資源整合功能性和可持續性的熒光薄膜。特別令人感興趣的是摻有熒光染料的纖維素薄膜,因為這些薄膜有望將染料的固有性質與優異的光學和機械性能完美結合。為此,需要全面了解纖維素薄膜的熒光特性,以推進纖維素熒光薄膜的發展。
    我們獲得了異硫氰酸熒光素(FITC)、FITC標記的纖維素(FLC)和熒光素鈉鹽在甲醇、乙醇和水溶液中以及FLC薄膜中的吸收和熒光光譜。以硫酸奎寧在0.1 N H2SO4 溶液中的熒光為參考,將所得的各樣品的相對熒光量子產率換算成相應的絕對量子產率。熒光壽命是從熒光衰減曲線推導出來的。這些結果使我們能夠透過關聯熒光量子產率和壽命來確定每個樣品的輻射和非輻射衰變率。研究發現,FLC 在甲醇、乙醇和水溶液中的量子產率比 FITC 在溶液中的量子產率低約 10 倍。換句話說,與單獨使用 FITC 相比,將 FITC 引入纖維素鏈會導致熒光效率低。此外,FLC的吸收光譜和熒光光譜幾乎不會隨溶劑而變化,而當使用不同的溶劑時,單獨的FITC在這些光譜中變化很大。這意味著 FLC 的溶劑化顯色效果弱於單獨的 FITC。這些結果表明 FITC 部分和纖維素鏈之間存在相互作用,這可能會靜態地降低熒光量子產率,這可能是由於靜態猝滅所致。然而有趣的是,單獨的典型靜態猝滅通常不會改變輻射 k_r 和非輻射 k_nr 衰減常數,這與分析獲得的 k_r 和 k_nr 不一致。到目前為止的分析使我們能夠確定溶液中 FLC 的 k_r 值比溶液中 FITC 的 k_r 值降低了約 10 倍,而兩個系統之間的 k_nr 值幾乎保持不變。


    Integrating functionality into sustainably sourced fluorescent films using renewable resources is being actively investigated. Of particular interest are cellulose films incorporated with fluorescent dyes, as these films could perfectly combine the inherent functionalities of dyes with the excellent optical and mechanical properties of these naturally sourced films. To this end, a comprehensive understanding of fluorescence properties in cellulose films is required to advance cellulosic fluorescence films.
    We have acquired the absorption and fluorescence spectra of fluorescein isothiocyanate (FITC), FITC-labeled cellulose (FLC) and fluorescein sodium salt in methanol, ethanol, and aqueous solutions as well as FLC films. The obtained relative fluorescence quantum yield of each sample is converted into the corresponding absolute quantum yield using the fluorescence of quinine sulfate in 0.1 N H2SO4 solution as a reference. Fluorescence lifetimes are deduced from fluorescence decay profiles. These results allow us to determine the rate constants of radiative and nonradiative decay for each sample by correlating fluorescence quantum yields and lifetimes. The quantum yields of FLC in methanol, ethanol, and aqueous solutions are found to be about 10 times lower than those of FITC in solutions. In other words, chemically incorporating FITC into the cellulose backbone reduces the fluorescence efficiency. Further, the absorption and fluorescence spectra of FLC hardly vary depending on the solvents, whereas FITC alone greatly changes in those spectra when the different solvents are used. This means the solvatochromic effects of FLC are weaker than those of FITC alone. These results suggest that interactions exist between the FITC moieties and the cellulose chains, which can statically reduce the fluorescence quantum yield, possibly because of static quenching. Interestingly, however, typical static quenching alone usually does not change the radiative k_r and nonradiative k_nr decay constants, which is inconsistent with the analytically obtained k_r and k_nr. The analysis so far allows us to determine the k_r values of FLC in solutions are reduced by about 10-fold compared to those of FITC in solutions, while the k_nr values remain almost unchanged between the two systems.

    Fluorescent properties of fluorescein isothiocyanate, its chemically labeled cellulose, and fluorescein sodium salt in methanol, ethanol, and aqueous solutions 0 異硫氰酸熒光素、其化學標記的纖維素和熒光素鈉鹽在甲醇、乙醇和水溶液中的熒光特性 1 摘要 1 Abstract 3 Acknowledgements 5 Contents 6 List of figures 8 List of tables 11 Chapter 1 Introduction 12 1.1 Social background of cellulose research 12 1.2 Cellulose science and technology 13 1.3 Cellulose photonics 14 1.4 Cellulose incorporated with dye dopants 16 1.5 Fluorescein 17 1.6 Purpose of the study 18 Chapter 2 Preparation and methods 20 2.1 Materials 20 2.2 Preparing films, solutions and suspensions 21 2.3 Measurements 22 2.3.1 Absorption spectroscopy 22 2.3.2 Fluorescence spectroscopy 24 2.3.3 Fluorescence lifetime measurements 29 2.3.4 Quantifying quantum yield 33 2.3.5 Deducing radiative and nonradiative decay constants 34 Chapter 3 Training of sample preparations and measurements 36 3.1 Materials, preparation, and measurements 36 3.2 Comparing the obtained results with references 40 Chapter 4 Results and discussion 44 4.1 Fluorescein-labeled cellulose films 44 4.2 Fluorescein isothiocyanate (FITC) solutions 45 4.3 FITC-labeled cellulose suspensions 51 4.4 Fluorescein sodium salt solutions 55 4.5 Comparing fluorescence properties between the investigated dye materials 59 Chapter 5 Conclusion 62 References 64

    1 McDonough, W. & Braungart, M. in Sustainable solutions 139-150 (Routledge, 2017).
    2 Andres, R. et al. Carbon dioxide emissions from fossil‐fuel use, 1751–1950. Tellus B 51, 759-765 (1999).
    3 Pirani, S. Burning up: A global history of fossil fuel consumption. (Pluto Press, 2018).
    4 Pathak, C. & Mandalia, H. C. Petroleum industries: environmental pollution effects, management and treatment methods. International Journal of Separation for Environmental Sciences 1, 55 (2012).
    5 Bathrinath, S. et al. An initiative towards sustainability in the petroleum industry: A review. Materials Today: Proceedings 46, 7798-7802 (2021).
    6 Jafarinejad, S. Environmental impacts of the petroleum industry, protection options, and Regulations. Pet. Waste Treat. Pollut. Control, 85-116 (2017).
    7 Reis, J. in SPE Annual Technical Conference and Exhibition? SPE-26366-MS (SPE).
    8 Martins, F., Felgueiras, C., Smitkova, M. & Caetano, N. Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12, 964 (2019).
    9 Bharadwaj, A., Yadav, D. & Varshney, S. Non-biodegradable waste–its impact & safe disposal. Int. J. Adv. Technol. Eng. Sci 3 (2015).
    10 Morganti, P. Biodegradable polymers for a better future. Journal of Applied Cosmetology 35, 35/45-35/45 (2017).
    11 Kashyap, A., Kalita, J., Kalita, S. & Mazumdar, K. Present scenario of solid waste with special reference to plastic and other non-biodegradable solid waste and its management for the sustainable urban poor development in Guwahati city, Assam, India. management 1, 1 (2010).
    12 United Nations, Envision2030: 17 Goals to Transform the World for Persons with Disabilities, (2015).
    13 Gupta, P. K. et al. An update on overview of cellulose, its structure and applications. Cellulose 201, 84727 (2019).
    14 Moon, R. J., Schueneman, G. T. & Simonsen, J. Overview of cellulose nanomaterials, their capabilities and applications. Jom 68, 2383-2394 (2016).
    15 Li, T. et al. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47-56 (2021).
    16 Kargarzadeh, H. et al. Advances in cellulose nanomaterials. Cellulose 25, 2151-2189 (2018).
    17 Heinze, T. Cellulose: structure and properties. Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials, 1-52 (2016).
    18 Khalil, H. A. et al. Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydrate polymers 99, 649-665 (2014).
    19 Mokhena, T. C. et al. Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydrate Polymers 273, 118507 (2021).
    20 Benítez, A. & Walther, A. Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. Journal of Materials Chemistry A 5, 16003-16024 (2017).
    21 Hu, F. et al. Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper. Carbohydrate Polymers 254, 117474 (2021).
    22 Velásquez-Cock, J. et al. Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: Thermal and mechanical properties of the resulting films. Industrial Crops and Products 85, 1-10 (2016).
    23 Iwamoto, S., Isogai, A. & Iwata, T. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12, 831-836 (2011).
    24 Dufresne, A., Cavaillé, J. Y. & Vignon, M. R. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. Journal of applied polymer science 64, 1185-1194 (1997).
    25 Noishiki, Y., Nishiyama, Y., Wada, M., Kuga, S. & Magoshi, J. Mechanical properties of silk fibroin–microcrystalline cellulose composite films. Journal of Applied Polymer Science 86, 3425-3429 (2002).
    26 Hu, W. et al. Transparent and hazy all-cellulose composite films with superior mechanical properties. ACS Sustainable Chemistry & Engineering 6, 6974-6980 (2018).
    27 Trovatti, E. et al. Pullulan–nanofibrillated cellulose composite films with improved thermal and mechanical properties. Composites Science and Technology 72, 1556-1561 (2012).
    28 Stevanic, J. S., Bergström, E. M., Gatenholm, P., Berglund, L. & Salmén, L. Arabinoxylan/nanofibrillated cellulose composite films. Journal of Materials Science 47, 6724-6732 (2012).
    29 Qiu, S. et al. Nacre-inspired black phosphorus/nanofibrillar cellulose composite film with enhanced mechanical properties and superior fire resistance. ACS applied materials & interfaces 12, 36639-36651 (2020).
    30 Bangar, S. P. & Whiteside, W. S. Nano-cellulose reinforced starch bio composite films-A review on green composites. International journal of biological macromolecules 185, 849-860 (2021).
    31 Ma, H., Zhou, B., Li, H.-S., Li, Y.-Q. & Ou, S.-Y. Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydrate Polymers 84, 383-389 (2011).
    32 Cai, J. et al. Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: mechanical and optical properties. Carbohydrate polymers 140, 238-245 (2016).
    33 Han, D., Yan, L., Chen, W., Li, W. & Bangal, P. Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydrate Polymers 83, 966-972 (2011).
    34 Huang, C., Dong, H., Zhang, Z., Bian, H. & Yong, Q. Procuring the nano-scale lignin in prehydrolyzate as ingredient to prepare cellulose nanofibril composite film with multiple functions. Cellulose 27, 9355-9370 (2020).
    35 Tang, C. & Liu, H. Cellulose nanofiber reinforced poly (vinyl alcohol) composite film with high visible light transmittance. Composites Part A: Applied Science and Manufacturing 39, 1638-1643 (2008).
    36 Wang, X. & Wu, P. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation. ACS applied materials & interfaces 10, 34311-34321 (2018).
    37 Dias, A. B., Müller, C. M., Larotonda, F. D. & Laurindo, J. B. Mechanical and barrier properties of composite films based on rice flour and cellulose fibers. LWT-Food Science and Technology 44, 535-542 (2011).
    38 Wu, R.-L., Wang, X.-L., Li, F., Li, H.-Z. & Wang, Y.-Z. Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresource Technology 100, 2569-2574 (2009).
    39 Dumanli, A. G. m. et al. Digital color in cellulose nanocrystal films. ACS applied materials & interfaces 6, 12302-12306 (2014).
    40 Gray, D. G. Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal films. Nanomaterials 6, 213 (2016).
    41 Liu, D. et al. Structure–color mechanism of iridescent cellulose nanocrystal films. RSC Advances 4, 39322-39331 (2014).
    42 Boott, C. E., Tran, A., Hamad, W. Y. & MacLachlan, M. J. Cellulose nanocrystal elastomers with reversible visible color. Angewandte Chemie 132, 232-237 (2020).
    43 Almeida, A. P. et al. Cellulose‐based biomimetics and their applications. Advanced Materials 30, 1703655 (2018).
    44 Bardet, R., Belgacem, N. & Bras, J. Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS applied materials & interfaces 7, 4010-4018 (2015).
    45 Chang, M.-H. & Oh-e, M. Kinetic arrest during the drying of cellulose nanocrystal films from aqueous suspensions analogous to the freezing of thermal motions. Scientific Reports 12, 21042 (2022).
    46 Reimer, M. & Zollfrank, C. Cellulose for light manipulation: methods, applications, and prospects. Advanced Energy Materials 11, 2003866 (2021).
    47 Edgar, K. J. et al. Advances in cellulose ester performance and application. Progress in polymer science 26, 1605-1688 (2001).
    48 Orelma, H. et al. Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications. Cellulose 27, 1543-1553 (2020).
    49 George, J. & Sabapathi, S. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnology, science and applications, 45-54 (2015).
    50 Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T. & Goswami, S. Commercial application of cellulose nano-composites–A review. Biotechnology Reports 21, e00316 (2019).
    51 Trache, D., Thakur, V. K. & Boukherroub, R. Cellulose nanocrystals/graphene hybrids—a promising new class of materials for advanced applications. Nanomaterials 10, 1523 (2020).
    52 Parker, R. M. et al. The self‐assembly of cellulose nanocrystals: Hierarchical design of visual appearance. Advanced Materials 30, 1704477 (2018).
    53 Ghorbani, M., Roshangar, L. & Rad, J. S. Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. European Polymer Journal 130, 109697 (2020).
    54 Brebu, M. & Vasile, C. Thermal degradation of lignin—a review. Cellulose Chemistry & Technology 44, 353 (2010).
    55 Kalia, S., Kaith, B. & Kaur, I. Cellulose fibers: bio-and nano-polymer composites: green chemistry and technology. (Springer Science & Business Media, 2011).
    56 Thomas, S., Paul, S., Pothan, L. & Deepa, B. Natural fibres: structure, properties and applications. Cellulose Fibers: Bio-and Nano-Polymer Composites: Green Chemistry and Technology, 3-42 (2011).
    57 Varshney, V. & Naithani, S. Chemical functionalization of cellulose derived from nonconventional sources. Cellulose Fibers: Bio-and nano-polymer composites: Green chemistry and technology, 43-60 (2011).
    58 Nasatto, P. L. et al. Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 7, 777-803 (2015).
    59 Ciolacu, D. E. & Suflet, D. M. in Biomass as renewable raw material to obtain bioproducts of high-tech value 401-439 (Elsevier, 2018).
    60 Chang, C. & Zhang, L. Cellulose-based hydrogels: Present status and application prospects. Carbohydrate polymers 84, 40-53 (2011).
    61 Mu, R. et al. Recent trends and applications of cellulose nanocrystals in food industry. Trends in Food Science & Technology 93, 136-144 (2019).
    62 Zheng, H. et al. Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications. Advanced Materials 30, 1705948 (2018).
    63 Tran, A., Boott, C. E. & MacLachlan, M. J. Understanding the Self‐Assembly of Cellulose Nanocrystals—Toward Chiral Photonic Materials. Advanced Materials 32, 1905876 (2020).
    64 Espinha, A. et al. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nature photonics 12, 343-348 (2018).
    65 Giese, M., Blusch, L. K., Khan, M. K., Hamad, W. Y. & MacLachlan, M. J. Responsive mesoporous photonic cellulose films by supramolecular cotemplating. Angewandte Chemie 126, 9026-9030 (2014).
    66 Morán, J. I., Alvarez, V. A., Cyras, V. P. & Vázquez, A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15, 149-159 (2008).
    67 Johar, N., Ahmad, I. & Dufresne, A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products 37, 93-99 (2012).
    68 Menon, M. P., Selvakumar, R. & Ramakrishna, S. Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC advances 7, 42750-42773 (2017).
    69 Hamad, W. Y. & Hu, T. Q. Structure–process–yield interrelations in nanocrystalline cellulose extraction. The Canadian Journal of Chemical Engineering 88, 392-402 (2010).
    70 Wang, X., Li, H., Cao, Y. & Tang, Q. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresource technology 102, 7959-7965 (2011).
    71 Sheltami, R. M., Abdullah, I., Ahmad, I., Dufresne, A. & Kargarzadeh, H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers 88, 772-779 (2012).
    72 Bhat, A., Khan, I., Usmani, M. A., Umapathi, R. & Al-Kindy, S. M. Cellulose an ageless renewable green nanomaterial for medical applications: An overview of ionic liquids in extraction, separation and dissolution of cellulose. International journal of biological macromolecules 129, 750-777 (2019).
    73 Melikoğlu, A. Y., Bilek, S. E. & Cesur, S. Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydrate polymers 215, 330-337 (2019).
    74 Abdel-Halim, E. Chemical modification of cellulose extracted from sugarcane bagasse: Preparation of hydroxyethyl cellulose. Arabian Journal of Chemistry 7, 362-371 (2014).
    75 Updegraff, D. M. Semimicro determination of cellulose inbiological materials. Analytical biochemistry 32, 420-424 (1969).
    76 Danial, W. H. et al. The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydrate polymers 118, 165-169 (2015).
    77 Rosa, S. M., Rehman, N., de Miranda, M. I. G., Nachtigall, S. M. & Bica, C. I. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydrate Polymers 87, 1131-1138 (2012).
    78 Ng, H.-M. et al. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering 75, 176-200 (2015).
    79 Bicu, I. & Mustata, F. Cellulose extraction from orange peel using sulfite digestion reagents. Bioresource technology 102, 10013-10019 (2011).
    80 Gupta, P. K. et al. An update on overview of cellulose, its structure and applications. Cellulose 201, 84727 (2019).
    81 Guan, Q.-F. et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Science advances 6, eaaz1114 (2020).
    82 El Awad Azrak, S. M., Clarkson, C. M., Moon, R. J., Schueneman, G. T. & Youngblood, J. P. Wet-stacking lamination of multilayer mechanically fibrillated cellulose nanofibril (CNF) sheets with increased mechanical performance for use in high-strength and lightweight structural and packaging applications. ACS Applied Polymer Materials 1, 2525-2534 (2019).
    83 Ferreira, E. S., Rezende, C. A. & Cranston, E. D. Fundamentals of cellulose lightweight materials: bio-based assemblies with tailored properties. Green chemistry 23, 3542-3568 (2021).
    84 Mondal, S. et al. High-performance carbon nanofiber coated cellulose filter paper for electromagnetic interference shielding. Cellulose 24, 5117-5131 (2017).
    85 Ray, U., Zhu, S., Pang, Z. & Li, T. Mechanics design in cellulose‐enabled high‐performance functional materials. Advanced Materials 33, 2002504 (2021).
    86 Nogi, M. et al. High thermal stability of optical transparency in cellulose nanofiber paper. Applied Physics Letters 102 (2013).
    87 Jiang, J., Oguzlu, H. & Jiang, F. 3D printing of lightweight, super-strong yet flexible all-cellulose structure. Chemical Engineering Journal 405, 126668 (2021).
    88 Cheng, Q., Wang, S. & Rials, T. G. Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Composites Part A: Applied Science and Manufacturing 40, 218-224 (2009).
    89 Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 40, 3941-3994 (2011).
    90 Poletto, M., Ornaghi Junior, H. L. & Zattera, A. J. Native cellulose: structure, characterization and thermal properties. Materials 7, 6105-6119 (2014).
    91 Fischer, S. et al. in Macromolecular symposia. 89-96 (Wiley Online Library).
    92 Mtibe, A. et al. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydrate Polymers 118, 1-8 (2015).
    93 Zimmermann, T., Bordeanu, N. & Strub, E. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers 79, 1086-1093 (2010).
    94 Lavoine, N., Desloges, I., Dufresne, A. & Bras, J. Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review. Carbohydrate polymers 90, 735-764 (2012).
    95 Poletto, M., Pistor, V. & Zattera, A. J. Structural characteristics and thermal properties of native cellulose. Cellulose-fundamental aspects 2, 45-68 (2013).
    96 Goussé, C., Chanzy, H., Cerrada, M. & Fleury, E. Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45, 1569-1575 (2004).
    97 Reddy, N. & Yang, Y. Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 46, 5494-5500 (2005).
    98 Reddy, N. & Yang, Y. Properties and potential applications of natural cellulose fibers from cornhusks. Green Chemistry 7, 190-195 (2005).
    99 Jonoobi, M. et al. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22, 935-969 (2015).
    100 Rojas, O. J. Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Vol. 271 (Springer, 2016).
    101 Ghannam, M. T. & Esmail, M. N. Rheological properties of carboxymethyl cellulose. Journal of applied polymer science 64, 289-301 (1997).
    102 Spence, K. L., Venditti, R. A., Rojas, O. J., Habibi, Y. & Pawlak, J. J. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18, 1097-1111 (2011).
    103 de Souza Lima, M. M. & Borsali, R. Rodlike cellulose microcrystals: structure, properties, and applications. Macromolecular rapid communications 25, 771-787 (2004).
    104 Kulachenko, A., Denoyelle, T., Galland, S. & Lindström, S. B. Elastic properties of cellulose nanopaper. Cellulose 19, 793-807 (2012).
    105 Mariano, M., El Kissi, N. & Dufresne, A. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. Journal of Polymer Science Part B: Polymer Physics 52, 791-806 (2014).
    106 Qiu, X. & Hu, S. “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6, 738-781 (2013).
    107 Yamanaka, S. et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of materials science 24, 3141-3145 (1989).
    108 Lu, J., Wang, T. & Drzal, L. T. Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Composites Part A: Applied Science and Manufacturing 39, 738-746 (2008).
    109 Benchabane, A. & Bekkour, K. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science 286, 1173-1180 (2008).
    110 Hurtado, P. L., Rouilly, A., Vandenbossche, V. & Raynaud, C. A review on the properties of cellulose fibre insulation. Building and environment 96, 170-177 (2016).
    111 Aulin, C. et al. Nanoscale Cellulose Films with Different Crystallinities and Mesostructures Their Surface Properties and Interaction with Water. Langmuir 25, 7675-7685 (2009).
    112 Kang, H., Liu, R. & Huang, Y. Graft modification of cellulose: Methods, properties and applications. Polymer 70, A1-A16 (2015).
    113 Heinze, T., El Seoud, O. A. & Koschella, A. Cellulose derivatives: synthesis, structure, and properties. (Springer, 2018).
    114 Lu, P. & Hsieh, Y.-L. Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydrate polymers 82, 329-336 (2010).
    115 Kabir, S. F. et al. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Progress in biomaterials 7, 153-174 (2018).
    116 Rånby, B. G. Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discussions of the Faraday Society 11, 158-164 (1951).
    117 Qi, H., Cai, J., Zhang, L. & Kuga, S. Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10, 1597-1602 (2009).
    118 Tayeb, A. H., Amini, E., Ghasemi, S. & Tajvidi, M. Cellulose nanomaterials—Binding properties and applications: A review. Molecules 23, 2684 (2018).
    119 Liu, D., Sun, X., Tian, H., Maiti, S. & Ma, Z. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20, 2981-2989 (2013).
    120 Bedane, A. H., Eić, M., Farmahini-Farahani, M. & Xiao, H. Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. Journal of Membrane Science 493, 46-57 (2015).
    121 Qin, C., Soykeabkaew, N., Xiuyuan, N. & Peijs, T. The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydrate polymers 71, 458-467 (2008).
    122 Leung, A. C. et al. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one‐step procedure. Small 7, 302-305 (2011).
    123 Seddiqi, H. et al. Cellulose and its derivatives: Towards biomedical applications. Cellulose 28, 1893-1931 (2021).
    124 Yue, Y. et al. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19, 1173-1187 (2012).
    125 Oksman, K. & Sain, M. Cellulose nanocomposites: processing, characterization and properties. (American Chemical Society (ACS), 2005).
    126 Cheng, G., Zhou, M., Wei, Y. J., Cheng, F. & Zhu, P. X. Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and microfibrillated cellulose in starch composites. Polymer Composites 40, E365-E372 (2019).
    127 Xu, X. et al. Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS applied materials & interfaces 5, 2999-3009 (2013).
    128 Chopra, L. Extraction of cellulosic fibers from the natural resources: a short review. Materials Today: Proceedings 48, 1265-1270 (2022).
    129 Le Gars, M., Douard, L., Belgacem, N. & Bras, J. Cellulose nanocrystals: From classical hydrolysis to the use of deep eutectic solvents. (IntechOpen London, UK, 2020).
    130 Madureira, A. R. et al. Extraction and characterisation of cellulose nanocrystals from pineapple peel. International Journal of Food Studies (2018).
    131 Nagarajan, K. et al. A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization. Polymer Composites 42, 1588-1630 (2021).
    132 Igarashi, Y., Sato, A., Okumura, H., Nakatsubo, F. & Yano, H. Manufacturing process centered on dry-pulp direct kneading method opens a door for commercialization of cellulose nanofiber reinforced composites. Chemical Engineering Journal 354, 563-568 (2018).
    133 Pagliaro, M. Cellulose nanofiber: An advanced biomaterial soon to become ubiquitous. Chim. Oggi 36, 61-62 (2018).
    134 Oyhenart, L. & Vignéras, V. Overview of computational methods for photonic crystals. (Intech, 2012).
    135 Mendoza-Galván, A., Muñoz-Pineda, E., Järrendahl, K. & Arwin, H. Pitch profile across the cuticle of the scarab beetle Cotinis mutabilis determined by analysis of Mueller matrix measurements. Royal Society Open Science 5, 181096 (2018).
    136 Seago, A. E., Brady, P., Vigneron, J.-P. & Schultz, T. D. Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). Journal of the Royal Society Interface 6, S165-S184 (2009).
    137 Tsushima, M., Ushizaka, T. & Ohta, N. Time-resolved measurement system of electrofluorescence spectra. Review of scientific instruments 75, 479-485 (2004).
    138 Lakowicz, J. (Springer, US: Boston, MA, 2006).
    139 Zanker, V. & Peter, W. Die prototropen formen des fluoresceins. Chemische Berichte 91, 572-580 (1958).
    140 Batistela, V. R. et al. Protolytic fluorescein species evaluated using chemometry and DFT studies. Dyes and Pigments 86, 15-24 (2010).

    QR CODE