研究生: |
馬偉銘 Ma, Wei-Ming |
---|---|
論文名稱: |
具儲能緩衝雙向交流/直流轉換器供電之切換式磁阻馬達驅動系統 BILATERAL AC/DC CONVERTER FED SWITCHED-RELUCTANCE MOTOR DRIVE WITH ENERGY STORAGE BUFFER |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
黃昌圳
Hwang, Chang-Chou 李建興 Lee, Chien-Hsing 陳盛基 Chen, Seng-Chi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 172 |
中文關鍵詞: | 切換式磁阻馬達 、換相移位 、再生煞車 、升壓 、功因矯正 、切換式整流器 、主動式功率濾波器 、儲能系統 、蓄電池 、並聯操作 |
外文關鍵詞: | Switched-reluctance motor, commutation shift, regenerative braking, voltage boosting, power factor correction, switch-mode rectifier, active power filter, energy storage system, battery, parallel operation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一具儲能緩衝之雙向交流/直流轉換器供電切換式磁阻馬達驅動系統,建立與比較評估多種交流/直流轉換器。首先探究切換式磁阻馬達之一些基礎及關鍵技術,並建構一三相橋式整流器供電之切換式磁阻馬達驅動系統。其感測機構、換相機構、電流與速度控制機構均妥善設計,獲得良好之驅控特性。然而未調控之直流鏈電壓,使馬達只能正常操作至一特定轉速;此外,其不具功率因數矯正與再生煞車回送電能至市電之功能。
接著開發各式具功因校正之交流/直流轉換器。首先建立標準三相全橋式升壓型切換式整流器供電之切換式磁阻馬達驅動系統,除具高入電電力品質外,可升壓之直流鏈電壓提升了切換式磁阻馬達之高速驅控特性;而再生煞車回收電能亦可成功回送市電。接著提出兩種由橋式整流器改良之替代方案: (i) 主動式功率濾波器輔助三相橋式整流器供電之切換式磁阻馬達:雖可改善橋式整流器固有之電力品質與再升煞車問題,然其直流鏈電壓變動問題仍在; (ii) 主動式功率濾波器輔助三相單開關升壓型切換式整流器供電之切換式磁阻馬達。其具有全橋式升壓型切換式整流器供電之完整功能,但可採用電流額定較低之功率元件。
最後,提出一具儲能緩衝之切換式整流器供電切換式磁阻馬達驅動系統,一蓄電池儲能裝置介接至系統之直流鏈,以提供能量緩衝。藉由所提之並聯控制策略,電網與蓄電池儲能裝置可同時對切換式磁阻馬達驅動系統供電,提升其能源供應之可靠性。
This thesis develops the bidirectional AC/DC converter fed switched-reluctance motor (SRM) drives with energy storage buffer. Various AC/DC converters are established and comparatively evaluated. First, some basic and critical technologies of SRM are explored, and a three-phase diode rectifier fed SRM drive is established. The sensing scheme, commutation scheme, current and speed control schemes are all properly designed. Satisfactory driving characteristics are obtained. However, it can only be normally operated up to a certain speed owing to the unregulated DC-link voltage. Moreover, it hasn’t power factor correction (PFC) and regenerating braking functions.
Next, various PFC AC/DC front-end converters are developed. The standard three-phase full-bridge boost SMR fed SRM drive is first established. Except for having good line drawn power quality, the boostable DC-link voltage of the SRM drive can enhance the SRM driving performance in higher speeds. Moreover, the recovered regenerative braking energy can be sent back to the grid successfully. Then, two alternatives modified from the diode rectifier are proposed: (i) active power filter (APF) assisted three-phase diode rectifier fed SRM drive: Although the power quality and the regenerative braking problems possessed by diode rectifier can be solved, the DC-link voltage variation problem still exists; and (ii) APF assisted three-phase single-switch (3P1SW) boost SMR fed SRM drive. All functions of the full-bridge SMR fed SRM drive are preserved. Moreover, the power devices with lower current ratings can be employed.
Finally, the SMR-fed SRM drive with energy storage buffer is presented. A battery storage facility is connected to the motor drive DC-link to provide its energy buffer. Through the proposed parallel operation strategy, the utility grid and the battery storage facility are able to power the SRM drive simultaneously to enhance its energy supplying reliability.
[1] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[2] P. C. Sen, Principles of Electric Machines and Power Electronics, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2014.
[3] K. Kiyota, T. Kakishima, and A. Chiba, “Comparison of test result and design stage prediction of switched reluctance motor competitive with 60-kW rare-earth PM motor,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5712-5721, 2014.
[4] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1 no. 3, pp. 245-254, 2015.
[5] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol.3, no. 1, pp. 58-75, 2017.
[6] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam, and K. N. Srinivas, “Switched-reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, 2008.
[7] T. Ishikawa and H. Dohmeki, “The fundamental design technique of switched reluctance motors, and comparison with PMSM,” in Proc. IEEE ICEM, 2012, pp. 500-504.
[8] K. Ohyama, Y. Nakazawa, K. Nozuka, and H. Fujii, “Design of high efficient switched reluctance motor for electric vehicle,” in Proc. IEEE IECON, 2013, pp. 7325-7330.
[9] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, 2017.
[10] B. Anvari, H. A. Toliyat, and B. Fahimi, “Simultaneous optimization of geometry and firing angles for in-wheel switched reluctance motor drive,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 322-329, 2018.
[11] M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
[12] K. Lu, P. O. Rasmussen, S. J. Watkins, and F. Blaabjerg, “A new low-cost hybrid switched reluctance motor for adjustable-speed pump applications,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 314-321, 2011.
[13] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang, and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012.
[14] S. M. Castano, J. M. Altes, and A. Emadi, “Development and performance analysis of a switched reluctance motor drive for an automotive air-conditioning system,” IEEE Trans. Transport. Electrific., pp. 1-8, 2016.
[15] L. Kolomeisev, D. Kraynov, S. Pakhomin, F. Rednov, E. Kallenbach, V. Kireev, T. Schneider, and J. Bocker, “Control of a linear switched reluctance motor as a propulsion system for autonomous railway vehicles,” in Proc. EPE-PEMC, 2008, pp. 1598-1603.
[16] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron, vol. 23, no. 1, pp. 445-454, 2008.
[17] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/super-capacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, 2015.
[18] R. Krishnan, D. Blanding, A. Bhanot, A. M. Staley, and N. S. Lobo, “High reliability SRM drive system for aerospace applications,” in Proc. IEEE IECON, 2003, vol. 2, pp. 1110-1115.
[19] Y. Sozer, I. Husain, and D. A. Torrey, “Guidance in selecting advanced control techniques for switched reluctance machine drives in emerging applications,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4505-4514, 2015.
[20] I. Ralev, F. Qi, B. Burkhart, A. Klein-Hessling, and R. W. D. Doncker, “Impact of smooth torque control on the efficiency of a high-speed automotive switched reluctance drive,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5509-5517, 2017.
[21] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
[22] J. Ye and A. Emadi, “Power electronic converters for 12/8 switched reluctance motor drives: a comparative analysis,” IEEE Trans. Transport. Electrific., pp. 1-6, 2014.
[23] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
[24] K. Tomczewski and K. Wrobel, “Improved C-dump converter for switched reluctance motor drives,” IET Power Electron., vol. 7, Iss. 10, pp. 2628-2635, 2013.
[25] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[26] H. L. Huy, K. Slimani, and P. Viarouge, “A current-controlled quasi-resonant converter for switched-reluctance motor,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp. 355-362, 1991.
[27] Y. Murai, J. Cheng, and M. Yoshida, “New soft-switched reluctance motor drive circuit,” in Proc. IEEE IAS, 1997, vol. 1, pp. 676-681.
[28] C. K. Pan, A DSP-based soft-switching converter-fed switched reluctance motor drive, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2003.
[29] Y. G. Dessouky, B. W. Williams, and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
[30] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[31] A. Dahmane, F. Meebody, and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” in Proc. IEEE PESC, 2001, vol. 2, pp. 844-849.
[32] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[33] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[34] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[35] A. K. Mishra and B. Singh, “Solar photovoltaic array dependent dual output converter based water pumping using switched reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5615-5623, 2017.
[36] V. Vujicic and S. N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
[37] B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
[38] D. S. Mihic, M. V. Terzic, and S. N. Vukosavic, “A new nonlinear analytical model of the SRM with included multiphase coupling,” IEEE Trans. Energy Convers., vol. 32, no. 4, pp. 1322-1334, 2017.
[39] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
[40] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
[41] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen, and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[42] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3717-3726, 2014.
[43] F. Peng, J. Ye, and A. Emadi, “A digital PWM current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7087-7098, 2016.
[44] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong and C. M. Liaw, “A current control scheme with back-EMF cancellation and tracking error adapted commutation shift for switched- reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, 2016.
[45] L. Ben Amor, L.-A. Dessaint, and O. Akhrif, “Switched reluctance motor torque control with peak current minimization,” in Proc. IEEE IECON, 2004, vol. 2, pp. 1885-1890.
[46] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
[47] G. John and A. R. Eastham, “Robust speed control of a switched reluctance drive,” in Proc. IEEE CCECE, 1993, vol. 1, pp. 317-320.
[48] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[49] C. Lucas, M. M. Shanehchi, P. Asadi, and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[50] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
[51] M. A. A. Morsy, M. S. A. Moteleb, and H. T. Dorrah, “Development of robust fuzzy sliding mode control technique for nonlinear drive systems,” in Proc. IEEE MHS, 2006, pp. 1-6.
[52] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[53] T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, “Flux-weakening control of switched reluctance machines in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 267-277, 2016.
[54] J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elect. Power Appl., vol. 153, no. 3, pp. 348-360, 2006.
[55] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling,” IEE Elect. Power Appl., vol. 4, no. 5, pp. 380-396, 2010.
[56] V. P. Vujicic, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
[57] J. J. Gribble, P. C. Kjaer, C. Cossar, and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
[58] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen, and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[59] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[60] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[61] Y. Sozer and D. A. Torrey, “Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors,” IET Power Elect. Appl., vol. 1, no. 3, pp. 395-401, 2007.
[62] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[63] K. W. Hu, Y. Y. Chen, T. S. Lin, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[64] H. N. Huang, K. W. Hu, and C. M. Liaw, “A switch-mode rectifier fed switched-reluctance motor drive with dynamic commutation shifting using DC-link current,” IET Electric Power Applications, vol. 11, no. 4, pp. 640-652, 2017.
[65] M. Hengchun, F. C. Y. Lee, D. Boroyevich, and S. Hiti, “Review of high performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[66] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems-part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[67] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems-part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[68] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, 1998.
[69] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[70] N. B. H. Youssef, K. Al-Haddad, and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal model of three-phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008.
[71] H. Chen, N. David, and D. C. Aliprantis, “Analysis of permanent-magnet synchronous generator with Vienna rectifier for wind energy conversion system,” IEEE Trans. Sustain. Energy., vol. 4, no. 1, pp. 154-163, 2013.
[72] Flores-Bahamonde, F., Valderrama-Blavi, H., Martinez-Salamero, L., Maixe-Altes, J., and Garcia, G., “Control of a three-phase AC/DC VIENNA converter based on the sliding mode loss-free resistor approach,” IET Power Electron., vol. 7, issue 5, pp. 1073-1082, 2014.
[73] K. W. Hu and C. M. Liaw, “A position sensorless surface-mounted permanent-magnet synchronous generator and its operation control,” IET Power Electron., vol. 8, no. 9, pp. 1636-1650, 2015.
[74] M. Cacciato, F. Caricchi, F. Giuhlii, and E. Santini, “A critical evaluation and design of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell applications,” in Proc. IEEE IAS, vol. 2, no. 2, pp. 1127-1133, 2004.
[75] Z. Zhang, O. C. Thomsen, and M. A. E. Andersen, “Optimal design of a push-pull-forward half-bridge (ppfhb) bidirectional DC–DC converter with variable input voltage,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2761-2771, 2012.
[76] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC–DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.
[77] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC/DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017.
[78] B. Singh, K. Al-Haddad, and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 960-971, 1999.
[79] M. El-Habrouk, M.K. Darwish, and P. Mehta, “Active power filters: a review,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 403-413, 2000.
[80] S. Rahmani, N. Mendalek, and K. Al-Haddad, “Experimental design of a nonlinear control technique for three-phase shunt active power filter,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3364-3375, 2010.
[81] M. Sarra, J. Gaubert, A. Chaoui, and F. Krim, “Two control strategies comparison of a three phase shunt active power filter for power quality improvement with experimental validation,” in Proc. IEEE EPE, 2011, pp. 1-11.
[82] T. C. Hsu, Development of a switched-reluctance motor drive with active power factor filter assisted three-phase single-switch boost switch-mode rectifier, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2016.
[83] V. de la Fuente, C. L. T. Rodriguez, G. Garcera, E. Figueres, and R. O. Gonzalez, “Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1571-1581, 2013.
[84] M. Rezkallah, A. Hamadi, A. Chandra, B. Singh, “Design and implementation of active power control with improved P&O method for wind-pv-battery-based standalone generation system,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5590-5600, 2018.
[85] U. R. Prasanna, P. Xuewei, A. K. Rathore, and K. Rajashekara, “Propulsion system architecture and power conditioning topologies for fuel cell vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 640-650, 2015.
[86] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, 2016.
[87] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to–vehicle microgrid-system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4 no. 1, pp. 157-171, 2018.
[88] N. Jabbour and C. Mademlis, “Supercapacitor-based energy recovery system with improved power control and energy management for elevator applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9389-9399, 2017.
[89] U. Manandhar, N. R. Tummuru, S. K. Kollimalla, A. Ukil, G. H. Beng, and K. Chaudhari, “Validation of faster joint control strategy for battery-and supercapacitor-based energy storage system,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3286-3295, 2018.
[90] “TMS320F28335 digital signal processors data manual,” Available: http://www.ti. com/lit/ds /symlink/tms320f28335.pdf, August 29, 2016.
[91] K. M. Tien, Development of position sensorless switch-mode rectifier fed switched- reluctance motor drives, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2017.