研究生: |
林慶廉 Lin, Ching-Lian |
---|---|
論文名稱: |
以High-k材料作為矽晶及HIT太陽電池鈍化層之研究 Surface passivation of c-Si and HIT solar cells with high-k material |
指導教授: |
曾孝明
Tseng, Shiao-Ming 黃惠良 Hwang, Huey-Liang |
口試委員: |
張廖貴術
林堅楊 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 原子層化學氣相沉積 、High-k 、鈍化層 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的太陽電池中,超過85%的太陽電池仍以矽材料為基板,效率的提升受限於載子在矽基板表面的複合,可以透過在表面鍍製一層鈍化層(Passivation layer)來降低載子在表面的複合。
在本篇論文中,使用原子層化學氣相沉積法(Atomic layer chemical deposition,簡稱 ALD)來鍍製High-k 材料薄膜當作鈍化層。首先鍍製不同High-k材料於單晶矽太陽電池,試了不同的鈍化條件:無High-k鈍化層、正面Al2O3、雙面Al2O3及雙面HfO2,實驗結果發現雙面鍍製HfO2可以達到較佳的鈍化效果,轉換效率達到15.542%。接下來將HfO2鍍製於HIT太陽電池表面當作鈍化層,同樣試了不同的鈍化條件:無HfO2鈍化層、IP面HfO2、IN面HfO2、雙面HfO2及不同的HfO2厚度,實驗結果發現鍍製8Å的HfO2在HIT的雙面可以達到最高的轉換效率,使用鈍化層的Cell,Voc為0.61V;Jsc為31.276mA/cm2;FF為0.612;效率提升至11.68%。
Over 85% of the solar cells currently produced are based on crystalline silicon wafers. The efficiency of silicon solar cells is significantly affected by electronic recombination losses at the wafer surfaces. A surface passivation layer can be used to reduce electronic recombination losses.
In this study, we used Atomic Layer chemical Deposition (ALD) to deposit high-k material as a passivation layer. At first we deposited different high-k materials on c-Si solar cells. We tried different passivation conditions, such as without high-k passivation, with Al2O3 in the front side, with Al2O3 on both sides, and with HfO2 on both sides. The result showed that cell with HfO2 on both sides achieved the highest efficiency of 15.542%. We also deposited HfO2 on HIT solar cells as surface passivation layer. Different passivation conditions such as without HfO2 passivation, with HfO2 on IP side, with HfO2 on IN side, and with HfO2 on both sides are used. HIT solar cell having passivation with HfO2 (8Å) on both sides achieved the highest efficiency. The highest efficiency obtained for HIT cell with HfO2 passivation was 11.68%, with a Voc of 0.61 V, Jsc of 31.276 mA/cm2 and FF of 0.612.
[1] Global Renewable Energy AG.
[2] John. (2004). "The Silicon Solar Cell Turns 50". National Renewable Energy Laboratory.
[3] N. R. E. Laboratory. Solar Photovoltaic Technology Basics. Available: http://www.nrel.gov/learning/re_photovoltaics.html
[4] Electronics Tutorials. Available: http://www.electronics-tutorials.ws/diode/diode_3.html
[5] INTECH. Electric Energy Management and Engineering in Solar Cell System. Available: http://www.intechopen.com/books/solar-cells-research-and-application-perspectives/electric-energy-management-and-engineering-in-solar-cell-system
[6] "Panasonic HIT® Solar Cell Achieves World's Highest Energy Conversion Efficiency*1 of 25.6%*2 at Research Level."
[7] Photovoltaic Effect. Available: http://www.mrsolar.com/content/photovoltaic-effect.php
[8] howstuffworks. Available: http://science.howstuffworks.com/environmental/energy/solar-cell1.htm
[9] SOLAR IN-DEPTH. Available: http://solarcellcentral.com/solar_page.html#tf_cells
[10] Absorption of Light | PVEducation. Available: http://pveducation.org/pvcdrom/pn-junction/absorption-of-light
[11] Open-Circuit Voltage | PVEducation. Available: http://pveducation.org/pvcdrom/solar-cell-operation/open-circuit-voltage
[12] Short-Circuit Current | PVEducation. Available: http://pveducation.org/pvcdrom/solar-cell-operation/short-circuit-current
[13] Fill Factor | PVEducation. Available: http://pveducation.org/pvcdrom/solar-cell-operation/fill-factor
[14] Efficiency | PVEducation. Available: http://pveducation.org/pvcdrom/solar-cell-operation/efficiency
[15] Quantum Efficiency | PVEducation. Available: http://pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency
[16] T. S. T. Tachibana, Y. Iwashita, Y. Kiyota, T. Chikyow,H. Yoshida, K. Arafune, S. I. Satoh, and A. Ogura, "Material Research on High-Quality Passivation Layers with Controlled Fixed Charge for Crystalline Silicon Solar Cells," Japanese Journal of Applied Physics vol. 50, pages 4, 2011 .
[17] Types of Recombination | PVEducation. Available: http://pveducation.org/pvcdrom/pn-junction/types-of-recombination
[18] Lifetime | PVEducation. Available: http://pveducation.org/pvcdrom/pn-junction/lifetime
[19] Diffusion Length | PVEducation. Available: http://pveducation.org/pvcdrom/pn-junction/diffusion-length
[20] Surface Recombination | PVEducation. Available: http://pveducation.org/pvcdrom/pn-junction/surface-recombination
[21] G. D. a. W. M. M. Kessels, "Status and prospects of Al2O3 -based surface passivation schemes for silicon solar cells," Journal of Vacuum Science & Technology A, vol. 30, 040802, 2012.
[22] T. S. T. Tachibana, Y. Iwashita, Y. Kiyota, T. Chikyow,H. Yoshida, K. Arafune, S. I. Satoh, and A. Ogura, "Material Research on High-Quality Passivation Layers with Controlled Fixed Charge for Crystalline Silicon Solar Cells," Japanese Journal of Applied Physics vol. 50, 04DP09, 2011.
[23] S.-C. R. J.-H. Choi, J.-D. Jung, and H.-I. Seo, "Chemical HF Treatment for Rear Surface Passivation of Crystalline Silicon Solar Cells," Transactions on Electrical and Electronic Materials, vol. 14, pages 203-207, 2013.
[24] B. H. F. Lin, Y.H. Koh , J.J. Lin and A.G. Aberle, "Low-temperature Surface Passivation of Moderately Doped Crystalline Silicon by Atomic-layer-deposited Hafnium Oxide Films," Energy Procedia, vol. 15, pages 84 -90, 2012.
[25] G. Z. H.-M. Li, C. Yang, D.-Y. Lee, Y.-D. Lim, T.-Z. Shen, W. J. Yoo, Y. J. Park, H. Kim, S. N. Cha, and J. M. Kim, "Enhancement of light absorption using high-k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells," Journal of Applies physics, vol. 109, 093516, 2011.
[26] O. R. J. F. Damlencourt, F. Martin, M. N. Séméria, T. Billon, and F. Bedu "Surface treatment for the atomic layer deposition of HfO 2 on silicon," Applied Physics Letters, vol. 86, 141913, 2005.
[27] B. M. Wang, J Shanmugam, M Tarighat ,R.S. Sivoththaman, and S Paul, "Passivation of silicon surfaces using atomic layer deposited metal oxides," Materials Research Society Symposium Proceedings, vol. 1153, pages 7-17, 2009.
[28] Q.-Q. S. W. Chen, S.-J. Ding, D. W. Zhang, and L.-K. Wang, "First principles calculations of oxygen vacancy passivation by fluorine in hafnium oxide," Applied Physics Letters vol. 89, pages 152904 - 152904-3, 2006.
[29] T.-J. C. a. C.-L. Kuo, "First principles study of the structural, electronic, and dielectric properties of amorphous HfO2," Journal of Applied Physics, vol. 110, 064105, 2011.
[30] B. V. A. Morato, H. Goverde, E. Cornagliotti, G. Meneghesso, J. John, and J. Poortmans, "Electrical characterization of ALD Al203 - Hf02 and PECVD Al203 passivation layers for p-type CZ-Silicon PERC solar cells " IEEE, 2011.
[31] A. Y. M. Taguchi, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, "24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer," IEEE Journal of Photovoltaics, vol. 4, pages 96 - 99, 2014.
[32] Y. M. J.H. Choi, J.P. Chang, "Development of hafnium based high-k materials—A review," Materials Science and Engineering R, vol. 72, pages 97–136, 2011.
[33] J. P. L. Niinistö, J. Niinistö, M. Putkonen, and M. Nieminen, "advanced electronic and optoelectronic materials by atomic layer deposition," Phys. Stat. Sol., vol. 201, pages 1443–1452, 2004.
[34]http://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/ex5/techniques/electronic/sem-copy/
[35] C. C. Hu, “Modern Semiconductor Devices for Integrated Circuits”, Prentice Hall
[36] General Lifetime Measurements | PVEducation. Available: http://pveducation.org/pvcdrom/characterisation/general-lifetime-measurements
[37] S. R. a. A. G. Shard, "Quantitative Analysis of Adsorbed Proteins by X-ray Photoelectron Spectroscopy," Analytical Chemistry, vol. 83, pages 8659–8666, 2011.
[38] A. Waxmanij and G. Warpield, “Tunneling in MIS Structures-1”, Solid-State Electronics, vol. 10, pages 1165-1186, 1967.
[39] H. M. P. K. Piskorski, "The methods to determine flat-band voltage VFB in semiconductor of a MOS structure" in MIPRO, 2010 Proceedings of the 33rd International Convention, ed: IEEE, pp. 37 - 42, 2010.
[40] J-F. Damlencourt, O. Renault, F. Martin, M-N. Séméria, T Billon, and F. Bedu, “Surface treatment for the atomic layer deposition of HfO2 on silicon”, Applied Physics Letters, vol. 86, pages 141913, 2005.
[41] M.-H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D.-H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO 2 films on Si (100) grown by atomic-layer deposition”, Applied Physics Letters, vol. 81, pages 472, 2002.
[42] M.D. Benoy, E.M. Mohammed, Suresh Babu M, Binu P.J, B. Pradeep, "Thickness dependence of the properties of indium tin oxide (ITO) FILMS prepared by activated reactive evaporation," Brazilian Journal of Physics, vol. 39, pages 629-632, 2009.