研究生: |
蕭 郁 Shiau, Yu |
---|---|
論文名稱: |
軍用頭盔內襯墊厚度之人因測評 Ergonomics and Fitness Evaluation of Helmet Pad Thickness |
指導教授: |
王茂駿
Wang, Mao-Jiun 盧俊銘 Lu, Jun-Ming |
口試委員: |
石裕川
Shih, Yuh-Chuan 邱敏綺 Chiu, Min-Chi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 合頭程度 、頭盔基準距離 、穩定性 、頭部壓力 |
外文關鍵詞: | standoff distance (SOD), tilt angle, helmet stability, contact pressure |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在各種作戰情境下,軍盔皆是軍人不可或缺的個人防護具之一,通常會在盔內貼附內襯墊以增加配戴時的舒適性、穩定性及安全性,但是目前國內外對於頭盔內襯墊厚度與頭盔合適性之相關研究鮮少,因此缺乏配戴建議與標準。有鑒於此,本研究以我國新型軍盔做為研究標的,招募30位20~30歲男性研究參與者,蒐集並比較配戴三種不同厚度內襯墊(10 mm、15 mm及20 mm)下的頭盔基準距離(Standoff distance, SOD,合頭程度的依據)、頭部壓力、頭盔穩定性(前後、左右、上下方向的頭盔移動量與縱軸、橫軸方向的偏移角度)以及主觀評量做為合適性指標,以找出最佳的襯墊厚度配置建議。
首先,本研究分別以三維疊合與游標卡尺方法量測靜態坐姿時的頭盔基準距離以評估合頭程度,並比較兩種方法的量測結果以相互驗證;過程中要求研究參與者配戴頭盔站立2分鐘,並分別於內襯墊與頭部表面間放置壓力感測器以量測頭部4個區域(前額、頭頂、側頭、後頭)的壓力情形,以評估其舒適性;隨後再要求參與者於跑步機上以時速8公里進行3分鐘的快走,除了蒐集頭部壓力,亦藉由三軸加速規估算頭盔的移動量,並在執行動作完成後使用坡度角度儀量測頭盔偏移角度,以評估穿戴穩定性;此外,將分別在執行站立動作前與快走動作後調查研究參與者對於合頭程度、頭部壓力、頭盔穩定性以及整體偏好等的主觀感受。
綜觀本研究實驗結果,兩種頭盔基準距離量測方法僅在後頭部位存在差異,並以三維疊合量測法有較高的精確度;合頭程度部分,厚度15 mm內襯墊符合軍盔安全標準並有最佳的合頭程度;頭部壓力部分,厚度20 mm內襯墊雖在靜態動作時有較均勻的頭部壓力,但於動態動作中則是以15 mm內襯墊有較佳的舒適性;穩定性部分,15 mm 內襯墊有最小的頭盔移動量及偏移角度,最為穩定;主觀偏好則是以15 mm內襯墊有最好的表現。同時本研究亦發現合頭程度、穩定性及主觀偏好之間具有正相關(Pearson相關係數介於0.67至0.79)。根據本研究結果,建議使用的內襯墊厚度為15 mm,以提升我國軍盔合適性,使得軍人在配戴時有更良好的合頭程度、穩定性及舒適感受,同時本研究可做為未來相關頭戴式產品進行合適性評估之考量準則,有助於頭盔開發設計之參考。
Military helmets are designed specifically to protect soldier’s head during combat. Poor helmet fitting has been reported to decrease its comfort, stability, and safety. To enhance the usability of military helmets, it is necessary to take head size and pad design into consideration. However, there are limited studies examining the correlation between pad thickness design and military helmet fitting. Thus, this study aims to identify the proper pad thickness design for stability and comfort of new military helmet from both static and dynamic perspectives.
Thirty male participants were recruited in this study. In the static experiment, two approaches (caliper measurement and 3D scanning for fitting test) were used to measure participants’ helmet standoff distance (SOD; the distance between inside of the helmet and the skull) with three pad thickness combinations (10 mm, 15 mm, and 20 mm) placed in the same helmet. In the dynamic experiment, participants performed two tasks including standing and walking on treadmill for 3 minutes with the speed of 8 km/hr. for all participants, contact pressure in four regions (front, top, sides, and occipital areas), displacement of helmet, and helmet tilt angle were collected. In addition, subjective responses including level of fit, head pressure, helmet stability, and overall preference were also collected after performing each of the two tasks.
The results showed that the difference of SOD measurements between the two approaches are significantly only in the occipital area. Besides, the 3D scanning method had higher precision than caliper measurement. Considering the level of fit, the pad with the thickness of 15 mm had the best performance and met the safety requirement. As for contact pressure, the pad with the thickness of 20 mm had better performance in the static posture, whereas the pad with the thickness of 15 mm outperformed in the dynamic postures. In addition, the pad with the thickness of 15 mm had less displacement and tilt angle of helmet, indicating the best stability. Further, subjective responses showed that participants prefer the pad with the thickness of 15 mm in terms of stability, comfort, and overall performance. Moreover, stability and comfort of helmet were found to be have high positive correlations (with Pearson’s correlation coefficient between 0.67 and 0.79).
Overall, the pad with the thickness of 15 mm are recommended to provide better fit, stability, and comfort for the new military helmet. The findings of this study also provides useful information for designing and developing related products in the future.
一、中文參考文獻
1. 麥麗敏、祁業榮、廖美華、鍾麗琴、戴瑄、黃玉琪、呂國昀(2008),解剖生理學。華杏出版股份有限公司,108-113。
2. 梁曉冬、周宏戴、詩亮(2003),軍盔舒適性研究。工程力學,20 (1),96-100。
3. 陳曉、施楣梧、周宏、王西亭、周國泰(2002),基於CT的軍盔“標準頭型”生成與頭模分檔演算法研究。兵工學報,23 (4),476-480。
4. 游志雲、楊宜學、葉蕙芳(1994),“勞工頭形模式之研究(I)”。勞委會安全衛生研究所,IOSH83-H222。
二、英文參考文獻
1. Ball, R.M. (2009). 3-D design tools from the SizeChina project. Ergonomics in Design, 17 (3), 8-13.
2. Ball, R.M. (2011). SizeChina: A 3D anthropometric survey of the Chinese head. Unpublished thesis (PhD), Delft University of Technology.
3. Ball, R.M., Molenbroek, J.F.M. (2008). Measuring Chinese heads and faces. In: Proceedings of the Ninth International Congress of Physiological Anthropology, Human Diversity: Design for Life. Delft, The Netherlands, 150-155.
4. Ball, R.M., Shu, C., Xi, P., Rioux, M., Luximon, Y., & Molenbroek, J. (2010). A comparison between Chinese and Caucasian head shapes. Applied Ergonomics, 41 (6), 832-839.
5. Cai, X., Blostein, D., & Saunders, F.W. (2015). A shape-based helmet fitting system for concussion protection. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4615-4618.
6. Carey, M.E., Herz, M., Corner, B., McEntire, J.M.E., & Malabarba, D.M.A. (2000). Ballistic Helmets and Aspects of Their Design. Neurosurgery, 47 (3), 678-689.
7. Catapan, M.F., Okimoto, M.L., Boas, M.V., & Waldhauerc, R. (2014). Tridimensional Study by Scanning the Variability Anthropometric Head Human Use of Ballistic Helmets. Proceedings of the 5th International Conference on Applied Human Factors and Ergonomics (AHFE), 634-644.
8. Catapan, M.F., Okimoto, M.L.L., Santana, F.E., Silva, C.M., & Rodrigues, Y.W. (2015). Anthropometric Analysis of Human Head for Designing Ballistic Helmets. Procedia Manufacturing, 3, 5475-5481.
9. Chen, X., Shi, M., Zhou, H., Wang, & X., Zhou, G. (2002). The ‘‘standard head’’ for sizing military helmet based on computerized tomography and the headform sizing algorithm. Acta Armamentarii, 23 (4), 476–480.
10. Coblentz, A., Mollard, R., & Ignazi, G. (1991). Three-dimensional face shape analysis of French adults, and its application to the design of protective equipment. Ergonomics, 34 (4), 497-517.
11. Collard, M., & O'Higgins, P. (2001). Ontogeny and homoplasy in the papionin monkey face. Evolution & Development, 3 (5), 322-331.
12. Corner, B.D., Beecher, R.M., & Paquette, S. (1997). Computer-aided fit testing: an approach for examining the user/equipment interface. In Electronic Imaging, 97, 37-47.
13. Defense and Civil Institute of Environmental Medicine (Canada). (1995). Helmet stand-off and sizing assessment using the Cyberware 3D laser scanning system. Defense and Civil Institute of Environmental Medicine. 1-8.
14. Ellena, T., Subic, A., Mustafa, H., & Pang, T.Y. (2016). The Helmet Fit Index–An intelligent tool for fit assessment and design customisation. Applied ergonomics, 55, 194-207.
15. Folgar, F., Scott, B.R., Walsh, S.M., & Wolbert, J. (2007). Thermoplastic matrix combat helmet with graphite-epoxy skin. 23rd International Symposium On Ballistics, Tarragona, Spain, 883-892.
16. Fonseca, G.F. (1976). Physiological factors in protective helmet design. (M1/77/14/USARIEM) U.S. Army Research Institute of Environmental Medicine Natick, MA.
17. Gentex Corporation. (2007). Technical manual operator’s manual for advanced combat helmet (ACH).
18. Gordon, C.C., Churchill, T., Clauser, C.E., Bradtmiller, B., & McConville, J.T. (1989). Anthropometric survey of U.S. Army personnel: methods and summary statistics. Anthropology Research Project Inc Yellow Springs OH.
19. Grujicic, M., Bell, W.C., Pandurangan, B., & He, T. (2010). Blast-wave impact-mitigation capability of polyurea when used as helmet suspension-pad material. Materials & Design, 31 (9), 4050-4065.
20. Hickling, E.M. (1986). Factors affecting the acceptability of head protection at work. Journal of occupational accidents, 8 (3), 193-206.
21. Hisley, D.M., Gurganus, J.C., & Drysdale, A.W. (2011). Experimental methodology using digital image correlation to assess ballistic helmet blunt trauma. Journal of Applied Mechanics, 78 (5), 051022-1~7.
22. Hong, C.X.S.M.Z., & Guotai, W.X.Z. (2002). The "standard head" for sizing military helmet based on computerized tomography and the headform sizing algorithm. Acta Armamentarii, 23 (4), 476-480.
23. Hsiao, H., Long, D., & Snyder, K. (2002). Anthropometric differences among occupational groups. Ergonomics, 45, 136-152.
24. Hurt, H.H., Thom, D.R., & Ouellet, J.V. (1998). Testing the positional stability of motorcycle helmets. Proceedings of the 16th Enhanced Safety of Vehicles Conference, 98-S10-P30, 2323-2330.
25. ISO International Organization for Standardization. (2005). 3D Scanning Methodologies for Internationally Compatible Anthropometric Databases. ISO 20685.
26. Jamison, P.L., & Zegura, S.L. (1974). A univariate and multivariate examination of measurement error in anthropometry. American Journal of Physical Anthropology, 40 (2), 197-203.
27. Kouchi, M., & Mochimaru, M. (2004). Analysis of 3D face forms for proper sizing and CAD of spectacle frames. Ergonomics, 47 (14), 1499-1516.
28. Kulkarni, S.G., Gao, X.L., Horner, S.E., Zheng, J.Q., & David, N.V. (2013). Ballistic helmets–their design, materials, and performance against traumatic brain injury. Composite Structures, 101, 313-331.
29. Laible, R. (Ed.). (2012). Ballistic materials and penetration mechanics. Elsevier, 5.
30. Lee, H.P., & Gong, S.W. (2010). Finite element analysis for the evaluation of protective functions of helmets against ballistic impact. Computer Methods in Biomechanics and Biomedical Engineering, 13 (5), 537-550.
31. Li, X.G., Gao, X.L., & Kleiven, S. (2016). Behind helmet blunt trauma induced by ballistic impact: A computational model. International Journal of Impact Engineering, 91, 56-67.
32. Li, Y.Q., Li, X.G., & Gao, X.L. (2015). Modeling of advanced combat helmet under ballistic impact. Journal of Applied Mechanics, 82 (11), 111004-1~9.
33. Likert, R. (1932). A Technique for the Measurement of Attitudes. Archives of Psychology, 140, 1-55.
34. Lu, J.M., & Wang, M.J. (2010). The Evaluation of Scan-Derived Anthropometric Measurements. IEEE Transactions on Instrumentation and Measurement, 59 (8), 2048-2054.
35. Luximon, Y., Ball, R., & Justice, L. (2012). The 3D Chinese head and face modeling. Computer-Aided Design, 44 (1), 40-47.
36. Madeira, M.C. (1997). Anatomia da face: bases anátomo-funcionais para a prática odontológica. Sarvier.
37. McIntosh, A., Suratno, B., Haley, J., & Troung, J. (2015). Evaluation of motorcycle helmet usability and stability in the consumer safety rating program ‘crash’. In 24th International Technical Conference on the Enhanced Safety of Vehicles (ESV), 15-0292, 1-8.
38. McManus, L.R., Durand, P.E., Claus Jr, W.D., & Greendale, J.H. (1976). Development of a New Infantry Helmet. Army Natick Research and Development Center Ma.
39. Meunier, P. (2010). A sizing strategy for the Advanced Modular Multi-threat Protective Headwear System (No. DRDC-TM-2008-176). Defence Research and Development Toronto (Canada).
40. Meunier, P., Tack, D., Ricci, A., Bossi, L., & Angel, H. (2000). Helmet accommodation analysis using 3D laser scanning. Applied Ergonomics, 31 (4), 361-369.
41. Moss, W.C., & King, M.J. (2011). Impact response of US Army and National Football League helmet pad systems (No. LLNL-SR-464951). Lawrence Livermore National lab CA.
42. Moss, W.C., King, M.J., & Blackman, E.G. (2009). Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Physical review letters, 103 (10), 108702-1~4.
43. Niu, J., Li, Z., Salvendy, G. (2009). Multi-resolution description of three-dimensional anthropometric data for design simplification. Applied Ergonomics, 40 (4), 807-810.
44. Pang, T.Y., Babalija, J., Perret-Ellena, T., Lo, T.S.T., Mustafa, H., & Subic, A. (2015). User centred design customisation of bicycle helmets liner for improved dynamic stability and fit. Procedia Engineering, 112, 85-91.
45. Perret-Ellena, T., Subic, A., Pang, T., & Mustafa, H. (2014). The helmet fit index-A method for the computational analysis of fit between human head shapes and bicycle helmets. icSPORTS, 145-153.
46. Robinette, K.M., & Whitestone, J.J. (1994). The need for improved anthropometric methods for the development of helmet systems. Aviation Space and Environmental Medicine, 65, 95-99.
47. Romanow, N.R., Hagel, B.E., Williamson, J., & Rowe, B.H. (2014). Cyclist head and facial injury risk in relation to helmet fit: a case-control study. Chronic diseases and injuries in Canada, 34 (1), 1-7.
48. Samil, F., & David, N.V. (2012). An ergonomic study of a conventional ballistic helmet. Procedia Engineering, 41, 1660-1666.
49. Sohaimi, R., Zaidi, A., & Abdullah, S. (2012). Materials and design issues for military helmets. Advances in Military Textiles and Personal Equipment, 103, 103-138.
50. Sovelius, R., Oksa, J., Rintala, H., Huhtala, H., & Siitonen, S. (2008). Neck muscle strain when wearing helmet and NVG during acceleration on a trampoline. Aviation, space, and environmental medicine, 79 (2), 112-116.
51. Thai, K.T., Pang, T.Y., McIntosh, A.S., & Schilter, E. (2009). Helmet Stability and Fit in Australian Pedal and Motor Cyclist Populations. In Proceedings of the 17th World Congress on Ergonomics, No. 2SA0023.
52. U.S. Army Infantry School Fort Benning. (2005). ACH proper wear and adjustment.
53. U.S. Army Infantry School Fort Benning. (2005). PASGT proper wear and adjustment.
54. U.S. Army soldier and biological chemical command Natick soldier center, Natick, Massachusetts. (2000). This is your ballistic helmet.
55. United States Army Natick research and development command. (1976). Development of a new infantry helmet.
56. Van den Oord, M.H., Steinman, Y., Sluiter, J.K., & Frings-Dresen, M.H. (2012). The effect of an optimised helmet fit on neck load and neck pain during military helicopter flights. Applied ergonomics, 43 (5), 958-964.
57. VV, J., SG, S., & Biswal, P. (2009). Sizing trials of a prototype aircrew helmet: Lessons re-learnt. Indian Journal of Aerospace Medicine, 53 (2), 44-52.
58. Walsh, S.M., Scott, B.R., & Spagnuolo, D.M. (2005). The development of a hybrid thermoplastic ballistic material with application to helmets (No. ARL-TR-3700). Army Research Lab Aberdeen Proving Ground MD.
59. Williams, P., Dyson, M., Dussak, J.E., Bannister, L.H., Berry, M.M., Collins, P., & Ferguson, M.W.J. Gray's anatomy. (1995). In. Skeletal system. 38th Ed. London, Elbs with Churchill Livingston, 607-612.
60. Wu, J., Li, Z., & Niu, J. (2009). A 3D method for fit assessment of a sizing system. In International Conference on Digital Human Modeling, 737-743.
61. Xi, P., & Shu, C. (2009). Consistent parameterization and statistical analysis of human head scans. The visual computer, 25 (9), 863-871.
62. Yagain, V.K., Pai, S.R., Kalthur, S.G., Chethan, P., & Hemalatha, I. (2012). Study of cephalic index in Indian students. International Journal of Morphology, 30 (1), 125-129.
63. Yoganandan, N. (Ed.). (1998). Frontiers in head and neck trauma: clinical and biomechanical. IOS Press, the Netherlands, 21, 153-200.
64. Yokota, M. (2005). Head and facial anthropometry of mixed-race US Army male soldiers for military design and sizing: A pilot study. Applied Ergonomics, 36 (3), 379-383.
65. Zheng, X., Ding, S., Zhou, Q., Liu, T., Yuan, X., & Guojie, L. (2012). Head and facial anthropometry of young Chinese male aged 18-35 years old. Advances in Physical Ergonomics and Safety, 502-508.
66. Zhuang, Z., & Bradtmiller, B. (2005). Head-and-face anthropometric survey of U.S. respirator users. Journal of occupational and environmental hygiene, 2, 567-576.
67. Zhuang, Z., Benson, S., & Viscusi, D. (2010). Digital 3-D headforms with facial features representative of the current US workforce. Ergonomics, 53, 661-671