簡易檢索 / 詳目顯示

研究生: 林廣成
論文名稱: 利用掃描穿隧電子顯微鏡研究鐵硒碲晶界並同時利用超導量子干涉元件與掃描穿隧顯微鏡掃描鈮與鑭鈣錳氧化合物
Scanning Tunneling Microscopic study near the grain boundary of FeSe0.3Te0.7 and simultaneous Scanning SQUID and Tunneling Microscopic study on Nb and La0.67Ca0.33MnO3
指導教授: 齊正中
口試委員: 齊正中
陳正中
王明杰
吳茂昆
林大欽
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 76
中文關鍵詞: STMFeSeTeSuperconductorScanning SQUIDLCMOGrain boundary
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文包含兩部份的研究。第一部份使用穿隧電子顯微技術(STM)來研究鐵硒超導體薄膜的性質。我們使用雷射濺鍍技術,在氧亞鎂基板上成長了彼此夾著45度角的鐵硒碲薄膜,並利用STM發現其在靠近晶界處,鐵硒碲的超導能隙從1.78電子伏特變化到18.6電子伏特。因為在晶界處,相鄰兩晶塊的相互擠壓而產生相當大的應力,這隱含著在邊界處的應力會提升超導體的超導能隙。

    在第二部份中,我們發展出能同時掃描磁場與表面原子形貌的技術,我們稱之為SSTM。眾所周知,掃描超導量子干涉元件具有很高的探測磁場靈敏度,而掃描穿隧電子顯微鏡有極高的空間解析度與電子能態的解析能力,因此他在超導特性上的電性分析是一個強而有力的工具。所以,我們新發展出來的 SSTM在電性與磁性上同時有很好的空間解析能力與微小訊號的的攝取能力,能分析樣品表面磁場和電性的相關性。我們除了介紹儀器的架設過程,也用之於鈮超導體與超巨磁阻鑭鈣錳氧化合物上的研究,各取得了一些有趣的結果。發現鈮超導體在外加磁場下,其超導能隙隨著靠近侷限磁場處會產生變化;也發現鑭鈣錳氧化合物在均勻的外加磁場下,會有磁波紋的產生。雖然產生這現象的原因還未十分明瞭,但是已可看出SSMT是一個研究新物理與新材料的有力工具。


    This thesis contains two research subjects. In the first part, we constructed a scanning tunneling microscope (STM) and used this STM system to study the superconductivity of FeSe0.3Te0.7 thin films. The FeSe0.3Te0.7 sample, fabricated using pulse laser deposition, was designed to have two orientations of grains on the same MgO substrate with an angle between these two grains at about 45 degree. Significant enhancement of superconducting energy gap from 1.78 meV to 18.6 meV near the grain boundary region was observed. Since the grains of these two orientations squeeze each other in the boundary region to generate substantial strain force, we suggest that the superconductivity of FeSeTe can be enhanced in the strained region.
    In the second part, we developed an instrument that can probe the distribution of magnetic fields and surface topography simultaneously by integrating scanning SQUID and STM into one, which is named as Scanning Squid Tunneling Microscope (SSTM). It is well known that scanning SQUID has a high sensitivity in detecting magnetic flux, and STM can resolve surface topography and probe electric properties at atomic scale. This newly designed SSTM system is therefore a powerful tool to analyze the correlations between magnetic and electric properties of intended sample surfaces. We demonstrated the capabilities of this SSTM system by measuring the superconducting Nb films and the colossal magnetoresistive La0.67Ca0.33MnO3 films. We have found an interesting evolution of superconducting energy gap of Nb varying symmetrically in a trapped magnetic flux region, and some periodic magnetic field ripples of the La0.67Ca0.33MnO3 films in the presence of a uniform external magnetic field. Although the physical origins of these observations are still unclear, our SSTM is undoubtedly proven a powerful instrument to explore new physics and new materials.

    中文摘要 i Abstract ii 致謝 iii List of Figures vi Part I. Scanning tunneling microscopic study near the grain boundary of FeSe0.3Te0.7 1 Chapter 1. Introduction 1-1 Introduction to superconductivity and ion-based superconductors 2 1-2 Motivation 4 Chapter 2. Theories and Experimental Setup of Scanning Tunneling Microscope 2-1 Theory of Scanning Tunneling Microscope and Spectroscope 7 2-2 Experimental Setup of the Low Temperature Ultra-high-vacuum Scanning Tunneling Microscope 14 Chapter 3. Experimental Results 3-1 Sample Preparation 21 3-2 Experimental Results 25 3-3 Discussion 31 Chapter 4. Conclusion 34 Part 2. Simultaneous Scanning SQUID and tunneling microscopic study on Nb and La0.67Ca0.33MnO3 .35 Chapter 5. Introduction 5-1 Introduction to Magnetic Imaging Technique 36 5-2 Motivation to Scanning SQUID and Tunneling Microscope Experiments 37 Chapter 6. Theories and Experimental Setup of Scanning SQUID and Tunneling Microscope 6-1 Theory of Superconducting Quantum Interference Device (SQUID) 39 6-2 Experimental Setup of the Scanning SQUID and Tunneling Microscope 45 6-2.1 SQUID Chip Setup 45 6-2.2 Experimental Setup of SSTM 46 6-2.3 Treatment of the Guiding Tip 49 Chapter 7. Experimental Results 7-1 Performance of the SSTM System 53 7-1.1 Quality of the STM Tips 53 7-1.2 Noise Spectrum of the SSTM System 58 7-2 Experimental Result and Discussion 60 7-2.1 The results of La0.67Ca0.33MnO3 Thin Films 60 7-2.2 The results of Nb Thin Films 64 Chapter 8. Conclusion 71 References 72

    [1] H. kamerlingh Onnes, Leiden Comm. 120b, 122b, 124c (1911).
    [2] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, (1957) 1175.
    [3] G. Bednorz and K. A. muller, Z. Phys. B 64, (1986) 189.
    [4] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, Phys. Rev. Lett. 58 (1987) 908-910.
    [5] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, (2008) 3296.
    [6] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, (2008) 3296.
    [7] Huang Q, Zhao J, Lynn J, Chen G, Luo J, Wang N and Dai P, Phys. Rev. B 78, (2008) 054529.
    [8] Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G and Chen X H, Phys. Rev. Lett. 101, (2008) 257003.
    [9] Hanaguri T, Aspen Winter Conf. on Condensed Matter Physics (Aspen, CO) (2011).
    [10] Song C-L, Wang Y-L, Jiang Y-P, Li Z, Wang L, He K, Chen X, Ma X-C, and Xue Q-K, Phys. Rev. B 84, (2011) 020503.
    [11] H. Ogino, Y. Matsumura, Y. Katsura, K. Ushiyama, S. Horii, K. Kishio, and J. Shimoyama, Supercond. Sci. Technol. 22, (2009) 075008.
    [12] F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Soc. U. S. A. 105, (2008) 14262.
    [13] K. W. Yeh, T. W. Huang, Y. L. Huang, T. K. Chen, F. C. Hsu, P. M. Wu, Y. C. Lee, Y. Y. Chu, C. L. Chen, J. Y. Luo, D. C. Yan, and M. K. Wu, Europhys. Lett. 84, (2008) 37002.
    [14] M. H. Fang, H. M. Pham, B. Qian, T. J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu, and Z. Q. Mao, Phys. Rev. B, 78 (2008) 224503.
    [15] F. Massee, S. de Jong, Y. Huang, J. Kaas, E. van Heumen, J. B. Goedkoop, and M. S. Golden, Phys. Rev. B 80, (2009) 140507.
    [16] Takuya Kato, Yoshikazu Mizuguchi, Hiroshi Nakamura, Tadashi Machida, Hideaki Sakata, and Yoshihiko Takano, Phys. Rev. B 80, (2009) 180507.
    [17] I. Fridman, K. W. Yeh, M. K. Wu, J. Y. T. Wei, J. Phys. Chem. Solids 72, (2011) 483.
    [18] T. Hanaguri, S. Niitaka, K. Kuroki, and H. Takagi, Science 328, (2010) 474.
    [19] Can-Li Song, Yi-Lin Wang, Peng Cheng, Ye-Ping Jiang, Wei Li, Tong Zhang, Zhi Li, Ke He, Lili Wang, Jin-Feng Jia, Hsiang-Hsuan Hung, Congjun Wu, Xucun Ma,Xi Chen, and Qi-Kun Xue, Science 332, (2011) 1410.
    [20] Qing-Yan Wang, Zhi Li, Wen-Hao Zhang, Zuo-Cheng Zhang, Jin-Song Zhang, Wei Li, Hao Ding, Yun-Bo Ou, Peng Deng, Kai Chang, Jing Wen, Can-Li Song, Ke He, Jin-Feng Jia, Shuai-Hua Ji, Ya-Yu Wang, Li-Li Wang, Xi Chen, Xu-Cun Ma, and Qi-Kun Xue, Chin. Phys. Lett. 29, (2012) 037402.
    [21] K. HORIGANE et al. J. Phys. Soc. Jpn. 78, (2009) 063705.
    [22] Weidong Si, Qing Jie, Lijun Wu, Juan Zhou, Genda Gu, P. D. Johnson, and Qiang Li, Phys. Rev. B 81, 092506 (2010).
    [23] S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, Nature Matter. 8, (2009) 630.
    [24] E. Bellingeri, I. Pallecchi, R. Buzio, A. Gerbi, D. Marre, M.R. Cimberle, M. Tropeano, M. Putti, A. Palenzona, S. Kaciulis, and C. Ferdeghini, J. Supercond. Nov. Magn. 24, (2011) 35.
    [25] E. Bellingeri, I. Pallecchi, R. Buzio, A. Gerbi, D. Marre, M. R. Cimberle, M. Tropeano, M. Putti, A. Palenzona, and C. Ferdeghini, Appl. Phys. Lett. 96, (2010) 102512.
    [26] Weidong Si, Zhi-Wei Lin, Qing Jie, Wei-Guo Yin, Juan Zhou, Genda Gu, P. D. Johnson, and Qiang Li, Appl. Phys. Lett. 95, (2009) 052504.
    [27] S. X. Huang, C. L. Chien, V. Thampy, and C. Broholm, Phys. Rev. Lett. 104, (2010) 217002.
    [28] A Gerbi, R. Buzio, E. Bellingeri, S. Kawale, D. Marre, A. S. Siri, A. Palenzona and C. Ferdeghini, Supercond. Sci. Technol. 25, (2012) 012001.
    [29] G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett. 40, (1982) 178.
    [30] C.J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford Uni. Press, 2008), 2nd ed.
    [31] J. Bardeen, Phys. Rev. Lett. 6, (1961) 57.
    [32] Byers J, Flatt´e M, and Scalapino D, Phys. Rev. Lett. 71, (1993) 3363.
    [33] J. A. Alarco, G. Brorsson, H. Olin, and E. Olsson, J. Appl. Phys. 75, (1994) 3202.
    [34] P. A. Lin, R. L. Lo, and C. C. Chi, J. Appl. Phys. 99, (2006) 083506.
    [35] Y. T. Shen, Y. S. Li, M. J. Wang, and C. C. Chi, arXiv:1305.3742.
    [36] Y. S. Li, J. Y. Luo, M. J. Wang, T. J. Chen, M. K. Wu, and C. C. Chi, arXiv:1205.0687.
    [37] Xiaobo He, Guorong Li, Jiandi Zhang, A. B. Karki, Rongying Jin, B. C. Sales, A. S. Sefat, M. A. McGuire, D. Mandrus, and E. W. Plummer, Phys. Rev. B 83, (2011) 220502.
    [38] T. Ekino, A. Sugimoto, and A.M. Gabovich, Low Temp. Phys. 39, (2013) 343.
    [39] Y Mizuguchi, YHara, K Deguchi, S Tsuda, T Yamaguchi, K Takeda, H Kotegawa , H Tou, and Y Takano, Supercond. Sci. Technol. 23, (2010) 054013
    [40] H. Okabe, N. Takeshita, K. Horigane, T. Muranaka, and J. Akimitsu, Phys. Rev. B 81, (2010) 205119.
    [41] Nathalie C. Gresty, Yasuhiro Takabayashi, Alexey Y. Ganin, Martin T. McDonald, John B. Claridge, Duong Giap, Yoshikazu Mizuguchi, Yoshihiko Takano, Tomoko Kagayama,| Yasuo Ohishi, Masaki Takata, Matthew J. Rosseinsky, Serena Margadonna, O and Kosmas Prassides, J. Am. Chem. Soc. 131, (2009) 16944.
    [42] Kazumasa Horigane, Haruhiro Hiraka, and Kenji Ohyama, J. Phys. Soc. Jpn. 78, (2009) 7.
    [43] B. D. Josephson, Phys. Lett. 1, (1962) 251.
    [44] B. S. Deaver and W. M. Fairbank, Phys. Rev. Lett. 7, (1961) 43.
    [45] R. Doll and M.Näbauer, Phys. Rev. Lett. 7, (1961) 51.
    [46] R.C. Jaklevic, Phys. Rev. Lett. 12, (1964) 159.
    [47] A.Barone and G. Paterno, “Physics and Application of the Josephson Effect”, JOHN WILEY & SONS.
    [48] J. R. Kirtley, M. B. Ketchen, C. C. Tsuei, et al., IBM J.RES. DEVELOP. V39, (1995) 655.
    [49] 吳彬瑋,“ 高磁導率探針之磁導率及空間解析度研究“, 清華大學.
    [50] Y. C. Liao, C. K. Yang, T. L. Wu, I. S. Hwang, M. K. Wu, and C. C. Chi, Phys. Rev. B 81, (2010) 195435.
    [51] J.G. Rodrigo and S. Vieira, Phys. C 404, (2004) 306.
    [52] K. Kajimura, H. Bando, K. Endo, W. Miztani, H. Murakami, M. Okano, S. Okayama, M. Ono, Y. Ono, H. Tokumoto, F. Sakai, K. Watanabe, and S. Wakiyama, Surface Science 181, (1987) 165.
    [53] 沈調明, “study on magnetic properties La0.67Ca0.33MnO3/YBa2Cu3Oδ bilayer thin films”, 清華大學.
    [54] Ji-Shiuan Chen, Yuan-Ron Ma, Yung Liou, and Yeong Der Yao, J. Appl. Phys. 99, (2006)
    [55] M. Liebmann, U. Kaiser, A. Schwarz, R. Wiesendanger, U. H. Pi et al., J. Appl. Phys. 93, (2003) 10.
    [56] H. F. Hess, R. B. Robison, R.C. Dynes, J. M. Vallers, Jr., and J. V. Waszczak, Phys. Rev. Lett. 62, (1989) 2.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE