研究生: |
張志鉉 Chushuan Chang |
---|---|
論文名稱: |
乙二醛在波長392-404nm之雷射誘發螢光光譜及其量子搏動現象之研究 |
指導教授: |
陳益佳
I-Chia Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 乙二醛 、量子搏動光譜技術 、齊曼效應 、傅立葉轉換 |
外文關鍵詞: | Glyoxal, Hyperfine quantum beats, Zeeman effect |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用超音速分子射束(supersonic free jet expansion)與雷射激發光譜(LIF)技術,我們研究乙二醛在波長392-404 nm之S1-S0能態躍遷之激發光譜。我們分析與指派電振躍遷分別屬於c型(Au)與a/b混型(Bu)之轉動光譜,決定分子之轉動常數與譜帶原點,發現具有很大的慣量缺(inertia defect):-4.8 -6.5 a.m.u.Å2,乃因分子之振動所造成。此分子之螢光首次被觀察到有量子搏動現象(quantum beats),藉由傅立葉轉換方法與量子搏動理論之分析,我們得到其偶合常數約0.02-20*10-4 cm-1,與振動模式沒有明顯的相依性。我們指派量子搏動現象為 能態透vibronic spin-orbit coupling機制與一暗態進行交互作用,此暗態經齊曼效應(Zeeman effect)鑑定為 能態。此外,觀察到電振對稱性為Bu對稱具有較多的量子搏動數目。在激發波長393 nm,螢光曲線從單一衰減轉變成具有半生期20-200,600-1400 ns之雙自然指數,亦即從小分子模式轉換至中間分子模式。在波長390 nm時,螢光則為一非常快速衰減之放光曲線。在激發能量約25325 cm-1,搏動頻率則由原本的0.6 MHz增加至3 MHz左右,顯示此三重態的生命期變短,經不同的解離途徑之分解能障推測,此生成物為2HCO,對應能障在25325 cm-1。藉由量子搏動光譜技術,我們研究在磁場影響下,在頻率範疇之量子搏動訊號與雷射極化方向之關係,我們觀察到能階分裂與磁場並非線性之關係,經分析得到能態解析的gl為0.212與0.160,與其混有三重態特徵多寡有關。
參考文獻
1. J. C. D. Brand, Trans. Faraday Soc. 50, 431-444 (1954).
2. W. Goetz, A. J. McHugh, and D.R. Ramsay, Can. J. Phys. 48, 1-5 (1970).
3. E. Pebay Peyroula, and R. Jost, J. Mol. Spectrosc. 121, 177-188 (1987).
4. E. Pebay Peyroula, and R. Jost, J. Mol. Spectrosc. 121, 167-176 (1987).
5. Ch. Ottinger and T. Winkler, Chem. Phys. Lett. 314, 411-420 (1999).
6. Shin-ichi Kamei, K. Okuyama, H. Abe, N. Mikami, and M. Ito, J. Phys. Chem. A 90, 93-100 (1986).
7. G. N. Currie and D. A. Ramsay, Can. J. Phys. 49, 317 (1971).
8. H. Hübner, A. Leeser, A. Burkert, D. A. Ramsay, and W. Hüttner, J. Mol. Spectrosc 184, 221-236
(1997).
9. C. S. Parmenter, J. Chem. Phys. 41, 658-665 (1964).
10. B. F. Rordorf, A. E. Knight and C. S. Parmenter, Chem. Phys. 27, 11-20 (1978).
11. G. W. Loge and C. S. Parmenter, J. Phys. Chem. 85, 1653-1662 (1981).
12. Y. Osamura, H. F. Schaefer, M. Dupuis, and W. A. Lester. Jr, J. Chem. Phys. 75, 5828-5836 (1981).
13. Y. Osamura and H. F. Schaefer, J. Chem. Phys. 74, 4576-4580 (1981).
14. J. H. Clark, C. B. Moore, and N. S. Nogar, J. Chem. Phys. 68, 1264 (1978).
15. J. W. Hepburn, R. J. Buss, L. J. Butler, and Y. T. Lee, J. Phys. Chem. A 87, 3638-3641 (1983).
16. J. M. Roscoe and R. A. Back, J. Phys. Chem. A. 90, 598-602 (1986).
17. X. Li and H. B. Schlegel, J. Chem. Phys., 114, 8-10 (2001).
18. X. Li, J. M. Milliam, and H. Bernhard Schlegel, J. Chem. Phys., 114, 8897-8904 (2001).
19. D. M. Koch, N .H. Khieu, and G. H. Peslherbe, J. Phys. Chem. A 105, 3598-3604 (2001).
20. L. Zhu, D. Kellis, and C. F. Ding, Chem. Phys. Lett. 257, 487-491 (1996).
21. Yunaing Chen, Wenjing Wang, and L Zhu, J. Phys. Chem. A 104, 11126-11131 (2000).
22. J. R. Durig, W. E. Bucy, and A. R. H. Cole, Can. J. Phys. 53, 1832 (1975).
23. D. P. Tew, N. C. Handy, and S. Carter, Mol. Phys. 99, 393-402 (2001).
24. C. E. Dykstra and H. F. Schaefer, J. Am. Chem. Soc. 98, 401-406 (1976).
25. R. N. Zare, Angular Momentum, Wiley, New York, 1988.
26. P. R. Bunker, Molecular Symmetry and Spectroscopy, Academic Press, New York, 1979.
27. S.-H. Lee and I.-C. Chen, Chem. Phys. 220, 175-189 (1997).
28. W. E. Howard and E. W. Schlag , J. Chem .Phys. 68, 2679-2685 (1978).
29. N. Ohta, J. Phys. Chem. A 100, 7298-7316 (1996).
30. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy, Dover Publication Inc. , New York,
1975.
31. M. Dubs, J. Mühlbach, and J. R. Huber, J. Chem. Phys. 85,1288-1294 (1986).
32. M. Dubs, J. J. Mühlbach, H. Bitto, P. Schmidt and J. R. Huber, 83, 3755-3766 (1985)
33. K. Blum, Density Matrix Theory and Applications, Plenum, New York, 1981.
34. E. Pebay Peyroula, A. Delon, and R. Jost, J. Mol. Spectrosc. 132, 123-151 (1988).
35. H. Katô, T. Oonishi, K. Nishizawa, S. Kasahara, and M. Baba, J. Chem. Phys. 106, 8392-8400
(1997).
36. D. A. Ramsay, M. Vervloet, F. Vanhorenbeke, M. Godefroid, and M. Herman, Can. J. Phys. 149, 348-355 (1991).
37. F. W. Birss, J. M. Brown, A. R. H. Cole, A. Lofthus, S. L. N. G. Krishnamachari, G. A. Osborne, J. Paldus, D. A. Ramsay, and L. Watmann, Can. J. Phys. 48, 1230-1241 (1970).
38. T. J. Sears, Comput. Phys. Rep. 2, 1-32 (1984).
39. T. J. Sears, Comput. Phys. Commun. 34, 123-133 (1984).
40. T. Oka and Y. Morino, J. Mol. Spectrosc. 6, 472-482 (1961).
41.黃正良博士論文,國立清華大學化學所(2000).
42. H. Bitto, Ph. D. Thesis, University of Zűrich (1984).
43. H. Bitto, H. Stafast, P. Russegger, and J. R. Huber, Chem Phys. 88, 249-256 (1984).
44. F. Lahmani, A. Tramer, and C. Tric, J. Chem. Phys. 60, 4431-4447 (1974).
45. C. G. Stevens and J. C. D. Brand, J. Chem. Phys. 58, 3324-3330 (1973).
46. P. Dupre, R. Jost, and M. Lombardi, Chem Phys. 91, 355-372 (1984).
47. I. Y. Chan and K. R. Walton, Mol. Phys. 34, 65-83 (1977).
48. H. Katô, K. Sawa, H. Kuwano, S. Kasahara, M. Baba, and S. Nagakura, J. Chem. Phys. 109,
4798-4806 (1998).
49. D. A. Ramsay, M. Vervloet, F. Vanhorenbeke, M. Godefroid, and M. Herman, J. Mol. Spectrosc. 149, 348-355 (1988).
50. H. Bitto, M. P. Docker, P. Schmidt, and J. R. Huber, J. Chem. Phys. 92, 187-196 (1990).
51. M. Dubs, P. Schmidt, and J. R. Huber, J. Chem. Phys. 85, 6335-6339 (1986).
52. J. I. Steinfeld, J. S. Franciso, and W. L. Hase, Chemical Kinetics and Dynamics, 2th, Prentice-Hall,
Inc, New Jersey, 1998.
53. L. R. Valachovic, M. F. Tuchler, M. Dulligan, Th. Droz-Georget, M. Zyrianov, A. Kolessov, H. Reisler, and C. Wittig, J. Chem. Phys. 112, 2752-2761 (2000).
54. 陳明維,未發表之實驗結果