簡易檢索 / 詳目顯示

研究生: 邱國峻
Guo-Jyun Chiou
論文名稱: 添加奈米級Cu6Sn5粉末對錫銀銅銲料接點之微結構及機械性質的影響
Effect of Nano-Sized Cu6Sn5 Additive on Microstructure and Mechanical Properties for SnAgCu Solder Joints with Au/Ni-P/Al UBM
指導教授: 杜正恭
Jenq-Gong Duh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 91
中文關鍵詞: 銅六錫五錫銀銅銲料介金屬化合物金/鎳-磷/鋁基板推球測試複合銲料奈米壓痕機潛變測試場發射式電子微探儀
外文關鍵詞: Cu6Sn5, Sn-Ag-Cu solder, intermetallic compound, Au/Ni-P/Al UBM, ball shear test, composite solder, nano-indentation, creep test, FE-EPMA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 增進銲料接點的機械強度在現今電子構裝的研發中是重要的議題。本研究探討添加奈米(nano)級之Cu6Sn5粉末的錫銀銅複合銲料與商用錫銀銅銲料之微結構與機械性質的比較。本研究中發現:複合銲料和金/無電鍍鎳磷/鋁基板在經過240°C一次迴銲後,在銲料/無電鍍鎳磷的界面生成Ni3Sn4介金屬化合物(IMC),Ni3Sn4的厚度會隨著迴銲次數增加而成長。而商用錫銀銅銲料接點在經過一次迴銲後,銲料/無電鍍鎳磷界面除了Ni3Sn4介金屬化合物生成外,還有Cu6Sn5介金屬化合物。經過多次迴銲後,由於界面Cu6Sn5介金屬化合物的剝離,在界面僅發現Ni3Sn4介金屬化合物,且Ni3Sn4介金屬化合物亦隨著迴銲次數的增加而成長。此外也觀察銲料凸塊內微結構之衍進,並藉由場發射電子微探儀(FE-EPMA)以進而分析銲料內元素分布的情形。
    在機械性質方面,利用奈米壓痕量測銲料凸塊之潛變特性,發現複合銲料有較高的潛變應變速率感應指數(creep strain rate sensitivity)。另外藉由微推拉力機量測銲料接點的推球強度,亦發現在每秒一百微米的推球速率下,當銲料接點經過一次到三次迴銲,添加奈米級Cu6Sn5粉末之複合銲料接點強度優於商用錫銀銅銲料接點強度。惟在超過五次迴銲後,複合銲料和商用錫銀銅銲料接點強度相若。此外,本文也探討在每秒一千微米的推球速率下複合銲料和商用錫銀銅銲料之接點強度,並發現在此推球速率條件下複合銲料接點強度明顯優於商用錫銀銅銲料。


    Improving mechanical strengths of solder joints is a crucial issue in electrons packaging, and using composite solders is one of the potential methods to increase the joints strengths. In this study, Cu6Sn5-contained solder paste was produced by mechanical mixing Cu6Sn5 nano powder into commercial SnAg solder paste. The Au/Ni-P/Al UBM was first deposited onto the silicon wafer, and the Cu6Sn5-contained solder paste was then stencil printed on the UBM and reflowed at 240°C. The interfacial morphology and microstructure of solder bumps were evaluated by FE-EPMA. With different reflows, the microstructures of solder matrixes and IMCs at interface of solder/UBM joint in both Cu6Sn5-contained solder and commercial Sn3.0Ag0.5Cu solder were evaluated and discussed. Besides, the elemental distribution of Cu6Sn5-contained solder was detected by X-ray color mapping in a newly developed FE-EPMA.
    To realize the effect of Cu6Sn5 nano powder doping, the creep characteristics and ball shear strengths of the joints were further investigated. Nanoindentation was employed to measure the creep characteristics of solder alloys. It was revealed that the creep strain rate sensitivity of Cu6Sn5-contained solder was higher than that of SnAgCu solder although the creep hardness of both solders was identical.
    Ball shear strengths of both solder joints were applied at two different shear speeds. In addition, the ball shear strengths of Cu6Sn5-contained solder and SnAgCu solder joints were probed with respect to the fracture surfaces, interfacial morphologies, and fracture modes. The effects of nano-sized Cu6Sn5 additive were summarized and the feasibility of this composite SnAgCu solder in electronic packaging was discussed.

    Table List(Ⅳ) Figure Captions(Ⅴ) Abstract(Ⅸ) Chapter Ⅰ Introduction(1) Chapter Ⅱ Literature Review(5) Chapter Ⅲ Experimental Procedures(24) 3.1 Fabrication Joints and Heat Treatment(24) 3.1.1 Substrate Preparation(24) 3.1.2 Fabrication of Nano-sized Cu6Sn5(24) 3.1.3 Fabrication of Solder(24) 3.1.4 Solder Joints Fabrication(25) 3.2 Sample Preparation for Analysis(25) 3.3 Microstructure Evaluation and Characterization(25) 3.3.1 Microstructure Observation(25) 3.3.2 Composition Analysis(26) 3.3.3 Nanoindentation Test(26) 3.3.4 Ball Shear Test(26) Chapter Ⅳ Results and Discussion(30) 4.1 Effect of Nano-Sized Cu6Sn5 Additive on Microstructure and Interfacial Reaction(30) 4.1.1 Interfacial Reaction between the Cu6Sn5-contained Solder and Au/Ni-P/Al UBM after Multiple Reflows(30) 4.1.2 Interfacial Reaction and Microstructures in Sn3.0Ag0.5Cu Solder Joint after Multiple Reflows(32) 4.2 Creep Behaviors of Cu6Sn5-Contained Solder and SnAgCu Solder(45) 4.2.1 Creep Characteristics of Cu6Sn5-Contained Solder after One Reflow(45) 4.2.2 Creep Properties of Cu6Sn5-Contained Solder and SnAgCu Solder(45) 4.3 Effect of Nano Cu6Sn5 Additive on Ball Shear Test(55) 4.3.1 Ball Shear Strength, Fracture Surface, and Failure Mode of Cu6Sn5-Contained Solder Joints after Multiple Reflows at 100um/s Shear Rate(55) 4.3.2 Mechanical Characteristics of Ball Shear Test for SnAgCu Solder Joints after Multiple Reflows at 100um/s Shear Speed(56) 4.3.3 Failure Mechanisms for Cu6Sn5-Contained and SnAgCu Solder by Ball Shear Test at 100um/s Shear Speed(57) 4.3.4 Ball Shear Test Results of Cu6Sn5-Contained Solder at 100um/s and 1000um/s Shear Speeds(58) 4.3.5 Shear Test for SnAgCu Solder at 100um/s and 1000um/s Shear Speed(60) 4.3.6 Comparing the Ball Shear Test Results between Cu6Sn5-Contained and SnAgCu Solder at 1000um/s Shear Speed(61) 4.4 Effects of Doping Nano Cu6Sn5 on Mechanical Behaviors with Different Deformation Rates(78) Chapter Ⅴ Conclusions(81) References(83)

    1. M. Abtew and G. Selvaduray, Mat. Sci. Eng.: R: Reports, 27, pp.95-141 (2000).
    2. H. Reichi, A. Schubert and M. Töpper, Micro. Rel., 40, pp.1243-1245 (2000)
    3. Website: gdn.ema.org.tw/newsletter/gdnEpaper20040900.htm.
    4. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K.Zeng and J.K. Kivilahti, J.Mat. Res., 17, pp.291 (2002)
    5. D.R. Frear, J.W. Jang, J.K. Lin and C. Zhang, JOM, 53, pp.28 (2001)
    6. W.H. Tao, C. Chen, C.E. Ho, W.T. Chen and C.R. Kao, Chem. Mat., 13, pp.1051 (2001)
    7. S.K. Kang, D.Y. Shih, K. Fogel, P. Lauro, M.J. Yim, G.Advocate, M. Griffin, C. Goldsmith, D.W. Henderson, T. Gosselin and D. King, J. Konrad, A. Sarkhel and K.J. Puttlitz, Electronic Components and Technology Conference, pp.448 (2001)
    8. S. K. Kang, H. Mavoori, S. Chada, et al., J. Electron. Mater., 30, pp.1049 (2001)
    9. J.W. Jang, D.R. Frear, T.Y. Lee and K.N. Tu, J. Appl. Phy., 88, pp.6359 (2000)
    10. P.T. Vianco, S.N. Burchett, M.K. Nielsen, et al., J. Electron. Mater., 28, pp.1127 (1999)
    11. R.S. Rai, S.K. Kang and S. Purushothaman, Electronic Components and Technology Conference, 1995. Proceedings., 45th, pp.1197 (1995)
    12. L.L. Ye, Z. Lai, J. Liu and A. Thölén, Electronic Components and Technology Conference, pp.134 (2000)
    13. M.E. Loomans and M.E. Fine, Metal. Mat. Trans. A, 31A, pp.1155 (2000)
    14. T.M. Korhonen, P. Su, S.J. Hong, M.A. Korhonen and C.Y. Li, J. Electron. Mater., 29, pp.1194 (2000)
    15. J.R. Oliver, J. Liu and Z. Lai, International Symposium on Advanced Packaging Materials, pp.152 (2000)
    16. W.R. Lewis, Notes on Soldering, Tin Research Institute, 1961, pp. 66
    17. J.W. Morris Jr., J.L. Freer Goldstein and Z. Mei, JOM, 25 (1993)
    18. Y.Y. Chen, J.G. Duh and B.S. Chiou, J. Mat. Sci.: Mat. In Elec., 11, pp.279 (2000)
    19. H.W. Miao and J.G. Duh, Mat. Chem. Phy., 71, pp.255 (2001)
    20. H.W. Miao, J.G. Duh and B.S. Chiou J. Mat. Sci.: Mat. In Elec., 11, pp.609 (2000)
    21. Y.Y. Wei and J.G. Duh, J. Mat. Sci.: Mat. In Elec., 9, 373 (1998)
    22. S.L. Chen, M.S. thesis, National Tsing Hua University, Hsinchu, Taiwan (1998)
    23. T.Y. Lee, W.J. Choi and K.N. Tu, J. Mater. Res., 17, pp.291 (2002)
    24. C.M. Miller, I.E. Anderson, J.F. Smith, J. Electron. Mater. 23, pp.595 (1994)
    25. K.Y. Lee, M. Li, D.R. Olsen, W.T. Chen, T.C. Ben, S. Mhaisalkar, Proceddings of the 51st Electronic Components and Technology Conference, 2001, pp.478.
    26. F. Guo, J. Lee, S. Choi, J.P. Lucas, T.R. Bieler, and K.N. Subramanian, J. Electron. Mater. 30, pp.1073 (2001)
    27. J.W. Morris, Jr., J.L.F. Goldstein, and Z. Mei, JOM 45, pp.25 (1993)
    28. F. Guo, S. Choi, J.P. Lucas, and K.N. Subramanian, J. Electron. Mater. 29, pp.1241 (2000)
    29. C.G. Kuo, S.M.L. Sastry, and K.L. Jerina, Microstructrues and Mechanical Properties of Aging Materials, ed. P.K. Liaw, R. Viswanathan, K.L. Murty, E.P. Simonen, and D. Frear (Warrendale, PA: TMS, 1993), pp.409-416.
    30. H. Mavoori, J. Organomet, Chem. 52, pp.30 (2000)
    31. Y. Wu, J.A. Sees, C. Pouraghabagher, L.A. Foster, J.L. Marshall, E.G. Jacobs and R.F. Pinizzotto, J. Electon. Mater. 22, pp.769 (1993)
    32. J.H. Lee, D. Park, J.T. Moon, Y.H. Lee, D.H. Shin and Y.S. Kim, J. Electron. Mater. 29, pp.1264 (2000)
    33. D. Lin, G.X. Wang, T.S. Srivatsan, M.A. Hajri and M. Petraroli, Mater. Lett. 53, (2002) pp.333
    34. D.C. Lin, S. Liu, T.M. Guo, G.X. Wang, T.S. Srivatsan, M. Petraroli, Mater. Sci. Eng. A-Struct. 360, (2003) pp.285
    35. A.A. Liu, H.K. Kim, K.N. Tu, and P.A. Totta, J. Appl. Phys. 80 [5], pp.2774 (1996)
    36. K.N. Tu, and K. Zeng, Mat. Sci. Eng. R. 34, (2001) pp.1
    37. Y. Wu, J.A. Sees, C. Pouraghabagher, L.A. Foster, J.L. Marshall, E.G. Jacobs and R.F. Pinizzotto, J. Electron. Mater. 22, (1993) pp.769
    38. S. Choi, T.R. Bieler, J.P. Lucas and K.N. Subramanian, J. Electron. Mater. 28, (1999) pp.1209
    39. L.Y. Hsiao, S.T. Kao, and J.G. Duh, J. Electron. Mater. 35[1], (2006) pp.81
    40. S.T. Kao, Y.C. Lin, and J.G. Duh, J. Electron. Mater. 35[3], (2006) pp.486-493
    41. J.J. Jiang and M. Gasik, J. Power Sources, 89 [1], (2000) pp.117-124
    42. N.H. Goo and K.S. Lee, Inter. J. Hydrogen Energy, 27[4], (2002) pp.433-438
    43. L. Bolin, Metal Powder Report, 53[5], (1998) pp.38
    44. M.L. Huang, C.M.L. Wu, J.K.L. Lai and Y.C. Chan, J. Electro. Mater. 29[8], (2000) pp.1021-1026
    45. R.B. Clough, A.J. Shapiro, G.K. Lucey, Mater. Sci. Tech-Lond. 10[8], (1994) pp.696-701
    46. Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE), Official Journal of the European Union, pp.27-38
    47. C.A. Harper, “Electronic Packaging and Interconnection Handbook”, McGraw-Hill, New York, 2nd Ed., 1997
    48. R.E. Reed-Hill, Physical Metallurgy Principles, PWS, Massachusetts, ISBN 0-53-492173-6, 1994, pp.306-307
    49. F. Guo, S. Choi, J.P. Lucas, K.N. Subramanian, Surf. MT. Thech., 13, (2001) pp.7
    50. W.K. Choi and H.M. Lee, J. Electron. Mater. 28, (1999) pp.1251
    51. J.G. Lee, F. Guo, K.N. Subramanian and J.P. Lucas, Solder. Surf. MT. Thech., 14, (2002) pp.11
    52. N.C. Lee, Chip Scale Review, March/April (2000), www.pb-free.com.
    53. IPC Road Map for Lead free Electronics Assemblies 2nd Draft, Nov (1999), www.leadfree.org
    54. A. Zribi, A. Clark, L. Zavalij, P. Borgesen and E.J. Cotts, J. Electron. Mater. 30, (2001) pp.1157
    55. C.W. Hwang, J.G. Lee, K. Suganuma and H. Mori, J. Electron. Mater. 32, (2003) pp.52
    56. K.S. Kim, S.H. Huh and K. Suganuma, Micrelectron. Relia. 43, (2003) pp.43
    57. W.K. Choi, J.H. Kim, S.W. Jeong and H.M. Lee, J. Mater. Res. 17, (2002) pp.43
    58. I.E. Anderson, B.A. Cook, J. Harringa, and R.L. Terpstra, 31, (2002) pp.1166
    59. J.P. Lucas, F. Guo, J. McDougall, T.R. Bieler, K.N. Subramanian and J.K. Park, J. Electron. Mater. 28 (1999) pp.1268
    60. H.S. Betrabet, S.M. McGee and J.K. McKinlay, Scripta Metall. 25, (1991) pp.2323
    61. S.G. Zhang, B.C. Yang, B. Yang, J. Xu, L.K. Shi, X.X. Zhu, Acta Metallurgica Sinica, 38[8], (2002) pp.888
    62. H.L. Lai and J.G. Duh, J. Electron. Mater. 32, (2003) pp.215
    63. P. Vianco, J. Rejent and G. Grant, Mater. Transactions 45, (2004) pp.765
    64. Z. Xia, Y. Shi, and Z. Chen, J. Mater. Eng. Perform., 11, (2002) pp.107
    65. E. Bradley and J. Hranisavljevic, IEEE T. Electron. Package., 24, (2001) pp.255
    66. M.L. Huang, C.M.L. Wu, J.K.L. Lai, L. Wang, and F.G. Wang, J. Mater. Sci.: Mater. EL, 11, (2000) pp.57
    67. J. Gomez, C. Basaran, Int. J. Solids Struct., 43, (2006) pp.1505-1527
    68. R.R. Chromik, R.P. Vinci, S.L. Allen, and M.R. Notis, JOM; 55[6], (2003) pp.66-69
    69. X. Ma, F. Yoshida, K. Shinbata, J. Mater. Sci. Lett., 21, (2002) pp.1397-1399
    70. X. Ma and F. Yoshida, Appl. Phys. Lett., 82[2], (2003) pp.188-190
    71. F.J. Wang, X. Ma, Y.Y. Qian, J. Mater. Sci., 40, (2005) pp.1923-1928
    72. G.Y. Jang, J.W. Lee, and J.G. Duh, J. Electron. Mater., 33[10], (2004) pp.1103-1110
    73. J.B. Pethica, R. Hutchings and W.C. Oliver, Phil. Mag. A 48 (1983) pp.593
    74. G.M. Pharr, W.C. Oliver and F.R. Brotzen, J. Mater. Res. 7, (1992) pp.613
    75. W.C. Oliver and G.M. Pharr, ibid. 7, (1992) pp.1564
    76. C.M. Cheng and Y.T. Cheng, Appl. Phys. Lett., 71, (1997) pp.2623
    77. A.E. Giannakopoulos and S. Suresh, Scripta Mater., 40, (1999) pp.1191
    78. M. Dao, N. Chollacoop, K.J.V. Vliet, T.A. Venkatesh and S. Suresh, Acta Mater., 49, (2001) pp.3899
    79. M. Abtew and G. Selvaduray, Mater. Sci. Eng. Reports, 27, (2000) pp.95
    80. R.E. Reed-Hill, Physical Metallurgy Principles, PWS, Massachusetts, ISBN 0-53-492173-6, 1994, pp.844-307
    81. ASTM F 1269-89, “Test Methods for Destructive Shear Testing of Ball bonds”, ASTM, Philadelphia
    82. JESD22-B117, “BGA Ball Shear”, JEDEC Solid State Technology Association, July 2000
    83. R. Erich, R.J. Coyle, G.M. Wenger, A. Primavera, “Shear Testing and Failure Mode Analysis for Evaluating BGA Ball Attachment”, in: IEEE/CPMT International Electronics Manufacturing Technology Symposium”, (1999) pp.16-22
    84. R.J. Coyle, P.P. Solan, “The Influence of Test Parameters and Package Design Features on Ball Shear Test Requirements”, in IEEE/CPMT International Electronics Manufacturing Technology Symposium, (2000) pp.168-177
    85. R.J. Coyle, D.E.H. Popps, A. Mawer, D.P. Cullen, G.M. Wenger, P.P. Solan, IEEE Trans. Comp. Pack. Technol. 4 (2003) 724-732
    86. M.O. Alam, Y.C. Chan, K.C. Hung, Microelectron. Relia. 42, (2002) pp.1065-1073
    87. R.J. Coyle, P.P. Solan, A.J. Serafino, S.A. Gahr, “The Influence of Room Temperature Aging on Ball Shear Strength and Microstructure of Area Array Solder Balls, in: Proceedings of the Electronic Components & Technology Conference, (2000), pp.160-169
    88. J.Y.H. Chia, B. Cotterell, T.C. Chai, Mater. Sci. Eng., A 417, (2006) pp.259-274
    89. J. Wolfenstine, S. Campos, D. Foster, J. Read, W.K. Behl, J. Power Sources, 109, (2002) pp.230
    90. J.I. Goldstein, “Scanning Electron Microscopy and X-ray Microanalysis”, New York: Plenum Press, (2003) pp. 404-421
    91. J.W. Yoon, S.W. Kim, and S.B. Jung, J. Alloy. Compd. 392, (2005) pp.247
    92. K.S. Kim, J. Alloy. and Compd. 352, (2003) pp.226
    93. J.I. Goldstein, “Scanning Electron Microscopy and X-ray Microanalysis”, New York: Plenum Press, (2003) pp. 65-97, 518-530
    94. T.B. Massalski, “Binary phase diagram”, ASM, Metals Park OH, (1990)
    95. B. Salam, C. Virseda, H. Da, N.N. Ekere, R. Durairaj, Slder. Surf. Mt. Tech., 16/1, (2004) pp.27-34
    96. M. He, Z. Chen, G. Qi, C.C. Wong, S.G. Mhaisalkar, Thin Solid Filmes, 462-463, (2004) pp.363-369
    97. C. Liu, P. Conway, D. Li, M. Hendriksen, J. Electron. Pack., 126, (2004) pp.359-366
    98. M.O. Alam and Y.C. Chan, K.N. Tu, J. Appl. Phys., 94[6], (2003) pp.4108-4115
    99. Y.H. Liu, C.M. Chuang, and K.L. Lin, J. Mater. Res., 19[8], (2004) pp.2471-2477
    100. J.W. Kim, S.B. Jung, Mater. Sci. Eng. A 397, (2005) pp.145-152
    101. J.H.L. Pang, and B.S. Xiong, IEEE T. Compon. Pack. T., 28[4], (2005) pp.830-840
    102. S.K. Kang, H. Mavoori, S. Chada, et al., J. Electron. Mater. 30, (2001) pp.1049.
    103. H. Rhee, J.P. Lucas, K.N. Subramanian, J Mater. Sci.-Mater. El. 13, (2002) pp.477-484.
    104. R.E. Reed-Hill, Physical Metallurgy Principles, PWS, Massachusetts, ISBN 0-53-492173-6, 1994, pp.165
    105. R.E. Reed-Hill, Physical Metallurgy Principles, PWS, Massachusetts, ISBN 0-53-492173-6, 1994, pp.842-844

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE