研究生: |
杜建輝 Chien-Hui Du |
---|---|
論文名稱: |
可程式化多重輸入輸出正交分頻多工基頻內收發機平台設計 A Configurable Emulation Platform for MIMO-OFDM Communications |
指導教授: |
馬席彬
Hsi-Pin Ma |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 無線通訊 、正交分頻多工 、多重輸出多重輸入 、平台設計 、基頻 、共同模擬 |
外文關鍵詞: | wireless communication, OFDM, MIMO, platform design, baseband, co-emulation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了享有更高級的無線傳輸品質及速度, 多重輸入多重輸出-正交分頻多工(MIMO-OFDM)的無線通訊技術在最近被視為研究的熱門主題, 本篇論文以FPGA 驗證平台為基礎, 開發一適用於多重輸入多重輸出正交分頻多工內收發機的模擬驗證平台, 期望建立一方便使用, 具
彈性與速度的內部接收器演算法開發平台。首先, 我們以高速無線通訊網路802.11n 的實體層標準, 建立傳送機架構並將其設置於現場可程式化陣列上以硬體產生傳送機pattern 以加快系統模擬速度。而對於內接收器的設計, 多引用現有通用之演算法設計, 包括訊框偵測器、訊框時序同步、通道估測、相位追蹤器、MIMO 偵測器等, 提供內接收機的基礎架構, 並且以軟體模擬通道效應驗證演算法。內接收器的演算法部份在平台上以C 及SystemC 語言模擬, 模組化的演算法可供平台的使用者僅對有興趣的模組作替換更改即可模擬整體系統之效能。平台的模擬流程中, 外收發機為國立台灣大學電子工程研究所吳安宇教授實驗室所開發的「適用於OFDM 外收發機之錯誤更正編解碼」, 通道的模擬則為國立台灣大學電子工程研究所闕志達教授實驗室所開發之「MIMO-OFDM 基頻通道模擬器」, 加上本篇論文所提出之平台可串起整個基頻處理器的完整模擬, 當中外收發器及通道模擬器皆為可輸入參數之硬體模擬器, 在節省模擬時間上有很大的效果, 然而內接收機為了保持程式更改的彈性, 尚不易以硬體實現, 然為了提升軟體模擬的速度, 我們也提出了一些方法改善, 其中最有效的還是將演算法固定的模組, 如FFT, 將其一同置入硬體作軟硬體的共同模擬。最後設計一網頁介面的圖形使用者介面(GUI), 使平台能夠讓使用者輕鬆進入使用, 在這介面上提出了多人使用平台時的工作排程方法。
[1] ”EWC HT PHY Specification,” Enhanced Wireless Consortium, Dec. 2005.
[2] http://cls.hs.yzu.edu.tw/cai-edit/www.gemplex.com.tw
[3] IEEE 802.11: ”IEEE Standard for Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications,” 1997.
[4] IEEE 802.11a: ”IEEE Standard for Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications,” 1999.
[5] IEEE 802.11b: ”IEEE Standard for Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications,” 1999.
[6] IEEE 802.11g: ”IEEE Standard for Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications,” 2003.
[7] ETSI, ”Broadband Radio Access Networks (BRAN): HIPERLAN Type 2 Technical
Specification Part 1-Physical Layer,” DTS/BRAN030003-1, Oct. 1999.
[8] 802.16e: ”IEEE Standard for Local and Metropolitan Area Networks Part 16: Air
Interface for Fixed and Mobile BroadbandWireless Access Systems Amendment
for Physical and Medium Access Control Layers for Combined Fixed and Mobile
Operation in Licensed Bands and Corrigendum 1,” IEEE 802.16e-2005, Dec. 2005
[9] OFDM System Emulation Platform - Channel, [Online]. Available:
http://ofdm.ee.ntu.edu.tw/default.aspx
[10] OFDM System Emulation Platform - Outer Transceiver, [Online]. Available:
http://ofdm.ee.ntu.edu.tw/default.aspx
[11] C. E. Shannon, ”A mathematical theory of communication,” Bell Labs Technical
Journal, vol. 27, pp.379-423, 1948.
[12] S. R. Saunders, Antennas and Propagation for Wireless Communication Systems,
New York: Wiley, 1999.
[13] T. Eng, N. Kong, and L. Milstein, ”Comparison of diversity combining techniques
for rayleigh-fading channels,” IEEE Transactions on Communications, vol. 44,
pp.1117-1129, September 1996.
[14] W. C. Lee, ”Effects on correlation between two mobile base station antennas,” IEEE
Transactions on Communications, vol. com-21, no. 11, pp.1214-1224, November
1974.
[15] W. C. Jakes, Microwave Mobile Communications, New York: Wiley, 1974.
[16] S. M. Alsmouti, ”A simple transmit diversity technique for wireless communications,”
IEEE Journal on Selected Area in Communications, vol. 16, no. 8, pp.1451-
1458, October 1998.
[17] G. L. Stぴuber, Principles of Mobile Communication, Norwell: Kluwer Academic,
2001.
[18] Chung-Wen Yu,”A Scalable MIMO Detector IP for Wireless Communications,” Department
of Electrical Engineering, National Tsing Hua University, Taiwan, 2006.
[19] Tsuguhide Aoki, Yoshimasa Egashira and Daisuke Takeda, ”PREAMBLE STRUCTURE
FOR MIMO-OFDM WLAN SYSTEMS BASED ON IEEE 802.11A,” 17th
Annual IEEE International Symposium on PIMRC 06.
[20] A. V. Oppenheim, Ronald, and W. Schafer, Discrete-Timing Signal Processing,
Prentice-Hall, New Jersey, 1989.
[21] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, ”A new VLSI-oriented FFT algorithm
and implement,” in Proc. 11th Annu. IEEE Int. ASIC Conf., pp. 337341, Sep. 1998.
[22] T. M. Schmidl and D. C. Cox, ”Low-Overhead, Low-Complexity [Burst] Synchronization
for OFDM,” Proc. ICC, pp. 1301-1306, 1996.
[23] T. M. Schmidl and D. C. Cox, ”Robust frequency and timing synchronization for
OFDM,” IEEE Transactions on Communications, pp. 1613-1621, Dec. 1997.
[24] Juha Heiskala, and John Terry, OFDM Wireless LANs, 2001.
[25] Chi-Yeh Yu,”MIMO-OFDM Baseband Transceiver Design for High Throughput
Wireless LAN,” Department of Electrical Engineering, National Taiwan University,
Taiwan, 2004.
[26] Hsin-Yu Kang, Design and Implementation of an MC-CDMA Baseband
Transceiver, July, 2003.
[27] J. L. Danger et al., ”Efficient FPGA Implementation of Gaussian Noise Generator
for Communication Channel Emulation,” Proc. 7th IEEE Int. Conf. on Elect., Circ.
and Syst. (ICECS’2K), Dec. 2000.
[28] O’Hara and Al Petrick, 802.11 Handbook: A Designer’s Companion, Standards
Information Network IEEE Press.
[29] Nader Sheikholeslami Alagha and Peter Kabal, ”Generalized Raised-Cosine Filters,”
IEEE Trans. on Commum., Vol. 47, no. 7, July 1999.