簡易檢索 / 詳目顯示

研究生: 陳文誌
Chen, Wen-Chih
論文名稱: 單晶矽H型樑微熱致動器之開發及其於微光機電系統之應用
The Study of Single Crystal Silicon H-Beam Thermal Actuator and its applications in MOEMS
指導教授: 方維倫
Fang, Weileun
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 114
中文關鍵詞: 熱致動器雙穩態微光開關微光學平台微機電系統微光機電系統
外文關鍵詞: MEMS, thermal actuator, optical switch, optical stage
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將開發一具備雙向致動能力之同平面微電熱式致動器,希望能具有較低的驅動電壓、簡單的製程步驟、具數十微米等級位移量及使用壽命長等優點。並據此需求提出一新型且具有同平面雙向致動能力之H型樑微熱致動器,並使用矽深蝕刻製程搭配SOI晶片製作出此微熱致動器。由量測結果可以得知,在尺寸為長度3000um、寬度10um及角度0.6˚之H型樑微熱致動器,在施加電壓約為30V時,其位移量大約為40um,而當施加電壓增加至40V時,其位移量則大約為52um,且具備雙向致動的能力。

    本研究亦將H型樑微熱致動器應用在微光機電之元件開發,在同平面方向光整合應用中,本文提出一雙穩態微光開關之設計;利用第一型態之H型樑微電熱式致動器,並搭配預挫曲彈簧之雙穩態結構,及一可連接致動器之位移輸出及維持雙穩態位置之機械連結結構,以切換光學微面鏡之兩個雙穩態位置,進而達到切換兩組光纖訊號之目的。透過光學量測,可以得知其光學特性,在切換時間方面只需要約5ms,插入損失小於0.62dB,其餘光學特性亦皆能達到市售微光開關的特性要求。且其可靠度之測試,目前已經操作大於10e5次,而性能無任何的降低。

    而在出平面光整合之應用中,本研究則提出一微光學透鏡平台之設計;利用第二型態之H型樑微電熱式致動器提供同平面致動位移輸出,再整合一微可變焦透鏡以改變出平面之透鏡焦距位置,並以高分子聚合物來做為機械連接結構,以避免元件間之熱電干擾,進而達到微光學透鏡平台所需之循軌及聚焦之性能。當分別致動微熱致動器及微變焦透鏡時,微光學透鏡平台水平方向之總位移量可達13um,且可調變微變焦透鏡之焦距位置,使其可同時具備相對於光軸方向之橫向的位移及改變橫向緃向的焦距或位移,以作為其循軌及聚焦之相關光學應用。


    摘要 i Abstract iii 致謝 iv 目錄 vi 圖目錄 viii 表目錄 x 第一章 前言 1 1-1、研究動機 1 1-2、文獻回顧 3 1-2-1 單向出平面致動之熱致動器 3 1-2-2 單向同平面致動之熱致動器 5 1-2-3 雙向出平面致動之熱致動器 6 1-2-4 雙向同平面致動之熱致動器 7 1-3、研究目標 8 第二章 H型樑微熱致動器 15 2-1、結構設計 15 2-2、結構分析 16 2-3、製程 19 2-4、製程及量測結果 20 2-5、結論 21 第三章 雙穩態微光開關之應用 31 3-1、結構設計 32 3-3、結構分析 34 3-4、製程 36 3-5、製程結果 37 3-6、光學特性量測 39 3-7、結論 43 第四章 微光學透鏡平台之應用 58 4-1、結構設計 59 4-2、結構分析 60 4-3、製程 61 4-4、製程結果 62 4-5、量測結果 63 4-6、結論 65 第五章 結論與未來工作 76 5-1、結論 76 5-2、未來工作 77 第六章 參考資料 79 附錄A 階梯橋式樑出平面微熱致動器 92

    [1] W. Riethmuller, and W. Benecke, “Thermally excited silicon microactuators,” IEEE Transactions on Eleltron Device, vol. 35, pp. 758-763, 1988.
    [2] W. Benecke, and W. Riethmuller, “Applications of silicon-microactuators based on bimorph structures,” IEEE MEMS’89, Salt Lake City, UT, Feb. 1989, pp. 116 –120.
    [3] B. Rashidian, and M.G. Allen, “Electrothermal microactuators based on dielectric loss heating,” IEEE MEMS’93, Ft. Lauderdale, Fla. Feb. 1993, pp. 24 –29.
    [4] J.W. Suh, C.W. Storment, and G.T.A. Kovacs, “Characterization of multi-segment organic thermal actuators,” Transducer ’95, Stockholm, Sweden, Jun. 1995, pp. 333-336.
    [5] S. Schweizer, S. Calmes, M. Laudon, and P. Remaud, “Thermal actuated optical microscanner with large angle and low consumption,” Sensors and Actuators A, vol. 76, pp. 470-477, 1999.
    [6] X.-Q. Sun, K. R. Farmer, and W. N. Carr, “A bistable microrelay based on two-segment multimorph cantilever actuators,” IEEE MEMS’98, Heidelberg, Germany, Jan. 1998, pp. 154-159.
    [7] J.M. Noworolski, E.H. Klaassen, J.R. Logan, K.E. Petersen, E. Kurt, and N.I. Maluf, “Process for in-plane and out-of plane single-crystal-silicon thermal microactuators,” Sensors and Actuators A, vol. 55, pp. 65-69, 1996.
    [8] T. Seki, M. Sakata, T. Nakajima, and M. Matsumoto, “Thermal buckling actuator for micro relays,” Transducer ‘97, Chicago, IL, Jun. 1997, pp. 1153-1156.
    [9] J.H. Comtois, and V.M. Bright, “Applications for surface-micromachined polysilicon thermal actuators and arrays,” Sensors and Actuators A, vol. 58, pp. 19-25, 1997.
    [10] J.R. Reid, V.M. Bright, and J.H. Comtois, “Automated assembly of flip-up micromirrors,” Transducer ‘97, Chicago, IL, Jun. 1997, pp. 347-350.
    [11] D.M. Burn, and V.M. Bright, “Design and performance of a double hot arm polysilicon thermal actuator,” SPIE Micromachining and Microfabrication Conference, Austin, TX. Sep. 1997, pp. 296-306.
    [12] J.H. Comtois, and M.A. Michalicek, “Characterization of electro-thermal actuators and arrays fabricated in a four-level, planarized surface-micromachined polycrystalline silicon process,” Transducer ’97, Chicago, IL. Jun. 1997, pp. 769-772.
    [13] J.H. Comtois, and M.A. Michalicek, “Electrothermal actuators fabricated in four-level planarized surface micromachined polycrystalline silicon,” Sensors and Actuators A, vol. 70, pp. 23-31, 1998.
    [14] J.T. Butler, and V.M. Bright, “Electrothermal and fabrication modeling of polysilicon thermal actuators,” ASME Microelectro-mechanical Systems, Anaheim, CA. Nov. 1998, pp. 571-576.
    [15] J.T. Butler, and V.M. Bright, “Average power control and positioning of polysilicon thermal actuators,” Sensors and Actuators A, vol. 72, pp. 88-97, 1999.
    [16] O. Ohmichi, Y. Yamagata, and T. Higuchi, “Micro impact drive mechanisms using optically excited thermal expansion,” J. Microelectromech. Syst., vol. 6, pp. 200-207, 1997.
    [17] E.T. Carlen, and C.H. Mastrangelo, “Simple, high actuation power, thermally activated paraffin microactuator,” Transducer ‘99, Sendai, Japan, Jun. 1999, pp. 1364-1367.
    [18] W.-C. Chen, P.-I Yeh, C.-F. Hu, and W. Fang, “Design and characterization of single-layer step-bridge structure for out-of-plane thermal actuator”, J. Microelectromech. Syst., Vol. 17, No. 1, pp. 70-77, 2008.
    [19] Y.-J. Lai, C. Lee, C.-Y. Wu, W.-C. Chen, C. Chen, Y.-S. Lin, W. Fang, R.-S. Huang, “Development of electrothermal actuator with optimized motion characteristics,” Jpn. J. Appl. Phys., 42, pp. 4067-4073, 2003.
    [20] B. R. P. Lerch, C. K. Slimane and P. Renaud, “Modelization and characterization of asymmetrical thermal micro-actuators,” J. of Micromech. Microeng., vol. 6, pp. 134—137, 1996.
    [21] Q.-A. Huang and N. K. S. Lee, “Analytical modeling and optimazation for a laterally-driven polysilicon,” Microsystems Technologies, vol. 5, pp. 133-137, 1999.
    [22] Q.-A. Huang and N. K. S. Lee, “Analysis and design of polysilicon thermal flexure actuator,” J. of Micromech. Microeng., vol. 9, pp. 64-70, 1999.
    [23] C. S. Pan and W. Hsu, “An electro-thermally and laterally driven polysilicon microactuator,” J. of Micromech. Mciroeng., vol. 7, pp. 7-13, 1997.
    [24] M. J. Sinclair, “A high force low area MEMS thermal actuator,” Thermal and Thermomechanical Phenomena in Electronic Systems, May, 2000, pp 127-131.
    [25] L. Que, J.-S. Park and Y. B. Gianchandani, “Bent-beam electrothermal actuators: Part I. Single beam and cascaded devices,” J. Microelectromech. Syst., 10, pp. 247-54, 2001.
    [26] J.-S. Park, L. L. Chu, A. D. Oliver and Y. B. Gianchandani, ”Bent-beam electrothermal actuators: Part II. Linear and rotary microengines,” J. Microelectromech. Syst., 10, pp. 255–62, 2001.
    [27] J. K. Luo, A. J. Flewitt, S. M. Spearing, N. A. Fleck, and W. I. Milne, “Three types of planar structure microspring electro-thermal actuators with insulating beam constraints,” J. of Micromech. Mciroeng., vol. 15, pp. 1527–1535, 2005.
    [28] T. Moulton and G. K. Ananthasuresh, “Micromechanical devices with embedded electro-thermal-compliant actuation,” Sensors and Actuators A, Vol. 90, pp. 38–48, 2001.
    [29] 羅炯成, “新型電熱式出平面微致動器之研究,” 國立清華大學動機系碩士論文, 2000.
    [30] W.-C. Chen, C.-C. Chu, J. Hsieh and W. Fang. “A reliable single-layer out-of-plane micromachined thermal actuator,” Sensors and Actuators A, Vol. 103, pp. 48-58, 2003.
    [31] D. Yan, A. Khajepour and R. Mansour, “Design and modeling of a MEMS bidirectional vertical thermal actuator,” J. Micromech. Microeng., 14, pp. 841-850, 2004.
    [32] R. Venditti, J. S. H. Lee, Y. Sun and D. Li, “An in-plane, bi-directional electrothermal MEMS actuator,” J. Micromech. Microeng., 16, pp. 2067-2070, 2006.
    [33] A. Cao, J. Kim and L. Lin, “Bi-directional electrothermal electromagnetic actuators,” J. Micromech. Microeng., 17, pp. 975–982, 2007.
    [34] J.W. Judy, and R.S. Muller, “Magnetic microactuation of torsional polysilicon structures,” Transducer ’95, Stockholm, Sweden, Jun. 1995, pp. 332-335.
    [35] C. Liu, T. Tsao, Y.C. Tai, T.S. Leu, C.M. Ho, W.L. Tang, and D. Miu, “Out-of-plane permalloy magnetic actuators for delta-wing control,” IEEE MEMS’95, Amsterdam, Neth. Jan, 1995 , pp. 7-12.
    [36] C. Liu, T. Tsao, Y.-C. Tai, W. Lui, P. Will, and C.-M. Ho, “A micromachined permalloy magnetic actuator array for micro robotics assembly systems,” Transducer’95, Stockholm, Sweden, June, 1995, pp. 328-331.
    [37] S.M. Ansari, P.S. Mangat, J. Klein, and H. Guckel, “A multi-level, LIGA-like process for three dimensional actuators,” IEEE MEMS’96, San Diego, CA. 1996 , pp. 285 –289.
    [38] T. Yasuda, I. Shimoyama, and H. Miura, “Cmos drivable electro-static microactuator with large deflection,” IEEE MEMS’97, Nagoya, Japan, Jan. 1997 , pp. 90 –95.
    [39] J.L.A. Yeh, H. Jiang, and N.C. Tien, “Integrated polysilicon and DRIE bulk silicon micromachining for an electrostatic torsional actuator,” J. Microelectromech. Syst., vol. 8, pp. 231-237, 1999.
    [40] L. J. Hornbeck, “Current status of the digital micromirror device (DMD) for projection television application,” Int. Electron Device Tech. Dig., Dallas, TX, December 1993, pp. 381-384.
    [41] J. Hsieh, C. C. Chu, J. M.-L. Tsai, and W. Fang, “Using extended BELST process in fabricating vertical comb actuator for optical application,” Proc. IEEE/LEOS Optical MEMS 2002, Lugano, Switzerland, August, 2002, pp. 133-134
    [42] A. Schroth, C. Lee, S. Matsumoto, and R. Maeda, “Application of sol-gel deposited thin PZT film for actuation of 1D and 2D scanners,” Sensors and Actuators A, vol. 73, pp. 144-152, 1999.
    [43] J. Tsaur, L Zhang, R. Maeda, and S. Matsumoto, “2D micro scanner actuated by sol-gel derived double layered PZT,” IEEE MEMS’02, Las Vegas, NV, January, 2002, pp.548-551.
    [44] M. Tani, M Akamatsu, Y. Yasuda, H. Fujita, and H. Toshiyoshi, “A laser display using a PZT-actuated 2D optical scanner,” IEEE/LEOS Optical MEMS 2005, Finland, August, 2005, pp. 9-10.
    [45] M. J. Sinclair, “A high force low area MEMS thermal actuator,” 2000 International Society Conference on Thermal Phenomena, Las Vegas, NV, May. 2000, pp.127-132.
    [46] Que, L. Otradovec, D. A. Oliver, Y. B. Gianchandani, “Pulse and DC Operation Lifetimes of Bent-Beam Electrothermal Actuators,” IEEE MEMS ’01, Interlaken, Switzerland, Jan. 2001, pp.570-573.
    [47] J. M. Maloney, D. L. DeVoe, and D. S. Schreiber, “Analysis and Design of Electrothermal Actuators Fabricated from Single Crystal Silicon,” ASME IMECE 2000, Orlando, FL, Nov. 2000, pp.233-240
    [48] J. M. Maloney, D. S. Schreiber, and D. L. DeVoe, “Large-Force Electrothermal Linear Micromotors,” J. of Micromech. Microeng., 14, pp. 226–234, 2004.
    [49] K. R. Cochran, L. Fan, and D. L. Devoe, “High-Power Optical Microswitch Based on Direct Fiber Actuation,” Sensors and Actuators A, 119, pp. 512-519, 2005.
    [50] J. M. Maloney, “Fabrication And Thermal Actuation Of Three Dimensional Micro Electro Mechanical Systems,” MS Thesis, University of Maryland, 2001.
    [51] X.-Q. Sun, K. R. Farmer, and W. N. Carr, “A bistable microrelay based on two-segment multimorph cantilever actuators,” IEEE MEMS’98, Heidelberg, Germany, Jan. 1998, pp. 154-159.
    [52] M. Hoffmann, P. Kopka, and E. Voges, “Bistable Micromechanical Fiber-Optic Switches on Silicon,” Broadband Optical Networks and Technologies, 1998 IEEE/LEOS Summer Topical Meetings, 1998, pp. 31-32.
    [53] M. Hoffmann, P. Kopka, T. Grob, and E. Voges, “Optical Fibre Switches Based on Full Wafer Silicon Micromachining”, J. of Micromech. Microeng., vol. 9, pp. 151-155, 1999.
    [54] M. Hoffmann, P. Kopka, T. Grob, and E. Voges, “All-silicon bistable micro-mechanical fibre switch,” Electronics Letters, vol. 34, 2, pp. 207-208, 1998.
    [55] B. D. Jensen, L. L. Howell, and L. G. Salmon, “Design of Two-Link, In-Plane, Bistable Compliant Mechanism,” ASME J. of Mechanical Design, Vol. 121, 3, pp. 416-423, 1999
    [56] M. B. Parkinson, B. D. Jensen, and G. M. Roach, “Optimization-Based Design of a Fully-Compliant Bistable Micromechanism,” ASME Proceedings of Design Engineering Technical Conferences and Computer Information in Engineering Conference, Baltimore, Maryland, Sep. 2000
    [57] M. S. Baker, S. M. Lyon, and L. L. Howell, “A Linear Displacement Bistable Micromechanism,” Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Baltimore, MD, Sep. 2000.
    [58] L. Dellmann, W. Noell, C. Marxer, K. Weible, M. Hoffmann, and N.F. de Rooij, “4×4 matrix switch based on MEMS switches and integrated waveguides,” Transducers’01, Munich, Germany, Jun. 2001, pp. 1332–1335.
    [59] I.-H. Hwang, Y.-S. Shim and J.-H. Lee, “Modeling and experimental characterization of the chevron-type bi-stable microactuator,” J. of Micromech. Microeng., 13, pp. 948–954, 2003.
    [60] H. N. Kwon, I.-H. Hwang and J.-H. Lee, “A pulse-operating electrostatic microactuator for bi-stable latching,” J. of Micromech. Microeng., 15, pp. 1511–1516, 2005.
    [61] E. Hashimoto, H. Tanaka, Y. Suzuki, Y. Uenishi, and A. Watabe, “Thermally controlled magnetization actuator (TCMA) using thermosensitive magnetic materials,” IEEE MEMS’94, Oiso, Japan, Jan. 1994, pp. 108-113.
    [62] E. Hashimoto, Y. Uenishi, and A. Watabe, “Thermally controlled magnetization microrelay,” Transducer’95, Stockholm, Sweden, Jun. 1995, pp.361-364.

    [63] E. Fullin, J. Gobet, H. A. C. Tilmans and J. Bergqvist, “A new basic technology for magnetic micro-actuators”, IEEE MEMS’98, Heidelberg, Germany, 1998, pp. 143-147.
    [64] W. P. Taylor, O. Brand and M. G. Allen, “Fully integrated magnetically actuated micromachined relays”, J. Microelectromech. Syst., 7, pp. 181-191, 1998.
    [65] C. Dieppedale, B. Desloges, H. Rostaing, J. Delamare, O. Cugat, J. Meunier-Carus, “Magnetic bistable micro-actuator with integrated permanent magnets” Proceedings of IEEE Sensors 2004, Vienna, Austria, Oct. 2004, pp.493- 496.
    [66] R. A. Miller, Y.-C. Tai, G. Xu, J. Bartha, and F. Lin, ”An Electromagnetic MEMS 2 x 2 Fiber Optic Bypass Switch,” Transducer '97, Chicago, IL, Jun. 1997, pp.89-92
    [67] H. Toshiyoshi, D. Miyauchi, and H. Fujita, “Electromagnetic Torsion Mirrors for Self-Aligned Fiber-Optic Crossconnectors by Silicon Micromachining,” IEEE J. Of Selected Topics In Quantum Electronics, 5, pp.10-17, 1999
    [68] P. Helin, M. Mita, H. Fujita, “Self aligned vertical mirrors and V-grooves applied to aself-latching matrix switch for optical networks,” IEEE MEMS ’00, Miyazaki, Japan, Jan. 2000, pp. 467-472
    [69] C.-H. Ji, Y. Yee, J. Choi, S.-H. Kim, and J.-U. Bu, “Electromagnetic 2x2 MEMS Optical Switch,” IEEE J. Of Selected Topics In Quantum Electronics, 10, pp545-550, 2004
    [70] J. S. Ko, M. L. Lee, D.-S. Lee, C. A. Choi and Y. T. Kim, “Development and application of a laterally driven electromagnetic microactuator,” Applied Physics Letters, 81, pp. 547-549, 2002
    [71] B. Hälg, “On a nonvolatile memory cell based on micro-electro-mechanics,” IEEE MEMS’90, Feb. 1990, p 172-176.
    [72] H. Matoba, T. Ishikawa, C. J. Kim, and R. S. Muller, “A bistable snapping microactuator,” IEEE MEMS’94, Oiso, Japan, Jan. 1994, pp. 45-50.
    [73] B. Wagner, H. J. Quenzer, S. Hoerschelmann, T. Lisec, and M. Juerss, “Bistable microvalve with pneumatically coupled membranes,” IEEE MEMS’96, San Diego, CA. Feb. 1996 , pp. 384-388.
    [74] M. T. A. Saif, “On a Tunable Bistable MEMS --- Theory and Experiment,” J. Microelectromech. Syst., vol. 9, pp. 157-170, 2000.
    [75] J. H. Lee, M. L. Lee, W. I. Jang, C. A. Choi, and J. W. Joo, “Bistable planar polysilicon microactuator with shallow arch-shaped leaf springs, ” SPIE Conference on Micromachined Devices and Components V, Santa Clara, CA, Sep. 1999, p274-279
    [76] J. S. Han, J. S. Ko, Y. T. Kim and B. M. Kwak, “Parametric study and optimization of a micro-optical switch with a laterally driven electromagnetic microactuator,” J. of Micromech. Microeng.,12, pp. 939–947, 2002.
    [77] J. S. Han, J. S. Ko, and J. G. Korvink, “Structural optimization of a large-displacement electromagnetic Lorentz force microactuator for optical switching applications,” J. of Micromech. Microeng.,14, pp. 1585-1596, 2004.

    [78] W. Noell, P.A. Clerc, F. Duport, C. Marxer, N. de Rooij, “Novel Process-Insensitive Latchable 2x2 Optical Cross Connector for Single- and Multimode Optical MEMS Fiber Switches,” IEEE Optical MEMS ’03, Freehold, NJ, Aug. 2003, pp. 49-50.
    [79] J. H. Lee, M. L. Lee, W. I. Jang, C. A. Choi, Y. T. Kim, “A planar latch-up microactuator driven by thermoelastic force,” Proceedings of SPIE, pp. 264-271, Dec. 2001
    [80] J. Qiu, J. H. Lang, and A. H. Slocum, “A centrally-clamped parallel-beam bistable MEMS mechanism,” IEEE MEMS ’01, Interlaken, Switzerland, Jan. 2001,pp.353-356.
    [81] J. Qiu, J. H. Lang, and A. H. Slocum, “A Curved-Beam Bistable Mechanism”, J. Microelectromech. Syst., 13, pp. 137-146, 2004
    [82] L.G. Commander, S.E. Day, and D.R. Selvian, “Variable focal length microlenses,” Optics communications, 177, pp. 157-170, 2001.
    [83] T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett., 82, pp. 316-318, 2003.
    [84] S.K. Cho, H. Moon, and C.J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” J. Microelectromech. Syst., 12, pp. 70-80, 2003.
    [85] http://www.newscenter.philips.com/InformationCenter/NewsCenter/FPressRelease.asp?lArticleId=3240&lNodeId
    [86] S.-H. Ahn and Y.-K. Kim, “Proposal of human eye's crystalline lens-like variable focusing lens,” Sensors and Actuators A, 78, pp. 48-53, 1999.
    [87] D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett., 82, pp. 3171-3172, 2003.
    [88] N. Chronis, G.L. Liu, K.-H. Jeong, and L.P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Optics Express, 11, pp. 2370-2378, 2003.
    [89] K.-H. Jeong, G.L. Liu, N. Chronis, and L.P. Lee, “Tunable microdoublet lens array,” Optics Express, 12, pp. 2494-2500, 2004.
    [90] J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng., 14, pp. 675-680, 2004.
    [91] M. Agarwal, R.A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng., 14, pp. 1665-1673, 2004.
    [92] S.-Y. Lee, H.-W. Tung, W.-C. Chen, and W. Fang, “Thermal Actuated Solid Tunable Lens,” IEEE J. of Photonics Technology Letters, Vol. 18, No. 21, pp.2191-2193, 2006
    [93] S.-Y. Lee, W.-C. Chen, H.-W. Tung, and W. Fang, 2007, “Microlens with Tunable Astigmatism,” IEEE J. of Photonics Technology Letters, Vol. 19, pp. 1383-1385

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE