簡易檢索 / 詳目顯示

研究生: 楊源誠
Yuan-Cheng Yang
論文名稱: 無線感測資訊儲存系統上的資料快取技術
Data Caching Techniques for Information Storage on WSNs
指導教授: 王家祥
Jia-Shung Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 85
中文關鍵詞: 資料快取資訊儲存無線感測網路階層式快取系統快取節點線性預測參數
外文關鍵詞: data caching, information storage, sensor networks, hierarchical caching system, cache node, forecasting parameters
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測網路是在廣泛的區域內散佈大量的無線感測器裝置以達到監控環境的效果,而這些無線感測器通常是由電池供應有限的電量,並配置受侷限的儲存記憶體空間與運算處理器。在這樣的情形下,要如何有效地利用無線感測器的有限的記憶體空間來儲存感測器所收集到的歷史資料,並快速地提供使用者提出查詢的統計量值,逐漸地成為以儲存資料為導向的無線感測網路範疇內一個相當重要的議題。
    在這篇論文裡,我們提出一種可以應用在資訊儲存系統上的資料快取技術,利用感測器取得資料的線性趨勢來對使用者查詢做快速的近似統計量值回報。我們利用階層式儲存架構的特質,試圖在資料傳輸與查詢封包的處理成本間取得平衡,並在各個階層提供使用者不同精確度的資料。在我們所實作的資料快取系統裡,我們將整個無線感測網路的儲存系統劃分為三個階層,各自由許多的無線感測器和快取節點所組成。透過線性資料預測的技術,我們可以讓快取節點藉由目前資料的趨勢來預測下一個時間點可能的資料數值,並且同時減少無線感測器傳送資料給快取節點所造成的龐大傳輸代價,另外,快取節點在記憶體空間裡所存放的各時間區段的線性趨勢與線性模型參數也可以在使用者提出查詢時產生立即、近似的統計結果,以減少使用者查詢所需要處理的時間以及在無線感測網路內傳送所需要耗費的能量。
    在實驗中,我們驗證了利用資料的線性趨勢可以成為在無線感測網路的儲存系統上被使用的一種快取技術,我們也可以發現在此儲存系統內運用不同的線性資料預測技術時,都會對此儲存系統架構內的資料準確度造成影響,並且改變傳輸成本的節省比例,另外,我們也比較了採用不同的線段合併方式對此儲存系統架構內的資料精確度會造成什麼樣的影響與結果。


    中文摘要 I Abstract II 致謝辭 IV Table of Contents V List of Figures VII List of Tables VIII Chapter 1. Introduction 1 Chapter 2. Related Work 8 2.1 Distributed Data Storage 8 2.2 Sensor Network as a Database 11 2.2.1 The Cougar Approach 12 2.2.2 The TinyDB System 13 2.2.3 The BBQ System 13 2.3 Data Compression and Linear Representation 13 2.3.1 Data Compression Techniques 14 2.3.2 Piece-wise Linear Representation 16 Chapter 3. The Proposed Caching Technique 18 3.1 System Architecture 19 3.1.1 Overview of the Architecture 19 3.1.2 Simultaneous Data Processing 21 3.1.3 The Storage Structures 22 3.2 Time-series Data Forecasting 23 3.2.1 Overview of Linear Regression 24 3.2.2 Least Square Error Linear Fit 24 3.2.3 Non-seasonal Holt-Winters Linear Forecast 25 3.2.4 Double Exponential Smoothing Linear Forecast 26 3.2.5 Directly Smoothed Slope based Linear Forecast 27 3.2.6 The Quality Metric 28 3.3 Cache Management Policy 29 3.3.1 Importance of Data Summary 31 3.3.2 Merge Distortion 32 3.3.3 The Replacement Strategy 33 3.4 Local Buffer Management Policy 39 3.4.1 Importance of Data 40 3.4.2 The Replacement Strategy 41 Chapter 4. The Framework of Query Processing 42 4.1 Drill-down Querying 42 4.1.1 Querying the Cache Level 44 4.1.2 Querying the Sensor Level 46 4.2 Query Workload Model 47 4.2.1 Periodic Arrival Process 48 4.2.2 Random Arrival Process 48 4.2.3 Historical Query Arrival Process 49 Chapter 5. Experimental Results 51 5.1 Testing Data Sets and Experimental Setup 51 5.2 Evaluation Metrics 53 5.2.1 Metric for Transmission Overhead 53 5.2.2 Metric for Query Performance 53 5.3 Performance Evaluation 55 5.3.1 Reduced Transmission Overhead 55 5.3.2 Query Performance 57 5.3.3 Hierarchical Data Quality 65 5.3.4 Computational Complexity 73 5.3.5 Program Execution Time 75 Chapter 6. Conclusion 78 References 80

    [1] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless Sensor Networks for Habitat Monitoring,” Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA ’02), pp. 88-97, September 2002.
    [2] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon, “Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks,” Proceedings of the 6th International Conference on Information Processing in Sensor Networks (IPSN ’07), pp. 254-263, April 2007.
    [3] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh, “An Energy-efficient Surveillance System Using Wireless Sensor Networks,” Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services (MobiSys ’04), pp. 270-283, June 2004.
    [4] G. J. Pottie and W. J. Kaiser, “Wireless Integrated Network Sensors,” Communications of the ACM, vol. 43, no. 5, pp. 51-58, May 2000.
    [5] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy, “Ultra-Low Power Data Storage for Sensor Networks,” Proceedings of the 5th International Conference on Information Processing in Sensor Networks (IPSN ’06) - SPOTS, pp. 374-381, 2006.
    [6] S. Madden, M. J. Franklin, and J. M. Hellerstein, “TAG: A Tiny AGgregation Service for Ad-Hoc Sensor Networks,” Proceedings of Symposium on Operating Systems Design and Implementation (OSDI ’02), pp. 131-146, 2002.
    [7] S. Yoon and C. Shahabi, “The Clustered Aggregation (CAG) Technique Leveraging Spatial and Temporal Correlations in Wireless Sensor Networks,” ACM Transactions on Sensor Networks (TOSN ’07) archive, vol. 3, no. 1, March 2007.
    [8] H. Dai, R. Han, and M. Neufeld, “ELF: An Efficient Log-Structured Flash File System for Micro Sensor Nodes,” Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys ’04), pp. 176-187, November 2004.
    [9] The STONES Project, STOrage for Networked Embedded Systems, http://sensors.cs.umass.edu/projects/stones/.
    [10] S. Ratnasamy, D. Estrin, R. Govindan, B. Karp, S. Shenker, Y. Li, and F. Yu, “Data-Centric Storage in Sensornets,” Proceedings of the 1st Workshop on Sensor Networks and Applications (WSNA ’02), 2002.
    [11] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker, “GHT: A Geographical Hash-Table for Data-Centric Storage,” 1st ACM International Workshop on Wireless Sensor Networks and their Applications, 2002.
    [12] Q. Fang, J. Gao, and L. J. Guibas, “Landmark-Based Information Storage and Retrieval in Sensor Networks,” in the 25th Conference of the IEEE Communication Society (INFOCOM ’06), April 2006.
    [13] D. Ganesan, D. Estrin, and J. Heidemann, “DIMENSIONS: Why do we need a new Data Handling architecture for Sensor Networks?” in First Workshop on Hot Topics in Networks (Hotnets-I ’02), vol. 1, October 2002.
    [14] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. S. Heidemann, “An Evaluation of Multi-resolution Storage for Sensor Networks,” Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys ’03), 2003.
    [15] P. Desnoyers, D. Ganesan, H. Li, and P. Shenoy, “PRESTO: A Predictive Storage Architecture for Sensor Networks,” Proceedings of the 10th Workshop on Hot Topics in Operating Systems (HotOS-X ’05), June 2005.
    [16] M. Li, D. Ganesan, and P. Shenoy, “PRESTO: Feedback-driven Data Management in Sensor Networks,” Proceedings of the 3rd Symposium on Networked Systems Design and Implementation (NSDI ’06), May 2006.
    [17] P. Desnoyers, D. Ganesan, and P. Shenoy, “TSAR: A Two Tier Sensor Storage Architecture Using Interval Skip Graphs,” Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (SenSys ’05), November 2005.
    [18] Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy, “Rethinking Data Management for Storage-centric Sensor Networks,” Proceedings of the 3rd Biennial Conference on Innovative Data Systems Research (CIDR ’07), pp. 22-32, January 2007.
    [19] The OceanStore Project, http://oceanstore.cs.berkeley.edu/.
    [20] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “OceanStore: An Architecture for Global-Scale Persistent Storage,” Proceedings of the 9th International Conference on Architectural support for programming languages and operating systems, November 2000.
    [21] L. Luo, C. Huang, T. Abdelzaher, J. A. Stankovic, and X. Liu, “EnviroStore: A Cooperative Storage System for Disconnected Operation in Sensor Networks,” Proceedings of the 26th Conference on Computer Communications (INFOCOM’ 07), May 2007.
    [22] D. Yates, E. Nahum, J. Kurose, and P. Shenoy, “Data Quality and Query Cost in Wireless Sensor Networks,” the 5th International Conference on Pervasive Computing and Communications (PerCom ’07), pp. 272-278, 2007.
    [23] The Cougar, http://www.cs.cornell.edu/database/cougar/index.php.
    [24] The TinyDB, http://telegraph.cs.berkeley.edu/tinydb.
    [25] Y. Yao and J. E. Gehrke, “The Cougar Approach to In-Network Query Processing in Sensor Networks,” in SIGMOD Record, vol. 31, no.3, September 2002.
    [26] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TinyDB: An Acquisitional Query Processing System for Sensor Networks,” ACM Transactions on Database Systems (TODS ’05), 2005.
    [27] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong, “Model-Driven Data Acquisition in Sensor Networks,” Proceedings of 30th International Conference on Very Large Data Bases (VLDB ’04), vol. 30, pp. 588-599, August 2004.
    [28] H. Chen, J. Li, and P. Mohapatra, “RACE: Time Series Compression with Rate Adaptivity and Error Bound for Sensor Networks,” Proceedings of IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS ’04), pp. 124-133, October 2004.
    [29] M. Garofalakis and P. B. Gibbons, “Wavelet Synopses with Error Guarantees,” Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD ’02), pp. 476-487, June 2002.
    [30] M. Garofalakis and A. Kumar, “Deterministic Wavelet Thresholding for Maximum-Error Metrics,” Proceedings of ACM Principles of Database Systems (PODS ’04), pp. 166-176, 2004.
    [31] Y. Lin, B. Liang, and B. Li, “Data Persistence in Large-Scale Sensor Networks with Decentralized Fountain Codes,” Proceedings of the 26th Conference on Computer Communications (INFOCOM ’07), May 2007.
    [32] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, and W. Truppel, “Online Amnesic Approximation of Streaming Time Series,” Proceedings of 20th International Conference on Data Engineering (ICDE ’04), March 2004.
    [33] T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos, “Using Datacube Aggregates for Approximate Querying and Deviation Detection,” IEEE Transactions on Knowledge and Data Engineering (TKDE ’05), November 2005.
    [34] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, “Multi-Dimensional Regression Analysis of Time-Series Data Streams,” Proceedings of the 28th International Conference on Very Large Data Bases (VLDB ’02), pp. 323-334, 2002.
    [35] Y. Chen, G. Dong, J. Han, J. Pei, B. Wah, and J. Wang, “Regression Cubes with Lossless Compression and Aggregation,” IEEE Transactions on Knowledge and Data Engineering (TKDE ’06), vol. 18, no. 12, pp. 1585-1599, December 2006.
    [36] J. Lim and K. G. Shin, “Energy-efficient Self-adapting Online Linear Forecasting for Wireless Sensor Network Applications,” Proceedings of the 2nd IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS ’05), November 2005.
    [37] D. C. Montgomery, L. A. Johnson, and J. S. Gardiner, “Forecasting and Time Series Analysis,” 2nd Edition, McGraw-Hill Book Company, 1990.
    [38] P. J. Broackwell and R. A. Davis, “Introduction to Time Series and Forecasting,” Springer, 1996.
    [39] S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman, “Forecasting: Methods and Applications,” 3rd Edition, John Wiley and Sons, Inc., 1998.
    [40] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed Diffusion for Wireless Sensor Networking,” IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 2-16, February 2003.
    [41] J. Bae, and R. M. Voyles, “Wireless Video Sensor Networks over Bluetooth for a Team of Urban Search and Rescue Robots,” International Conference on Wireless Networks, pp.409-415, June 2006.
    [42] M. Suzuki, S. Saruwatari, N. Kurata, and H. Morikawa, “A High-Density Earthquake Monitoring System Using Wireless Sensor Networks,” Proceedings of the 5th International Conference on Embedded Networked Sensor Systems, pp. 373-374, 2007.
    [43] INT. 2004. Intel Lab Data, http://db.csail.mit.edu/labdata/labdata.html.
    [44] A. Deligiannakis, Y. Kotidis and N. Roussopoulos, “Compressing Historical Information in Sensor Networks,” Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data (SIGMOD ’04), pp. 527-538, 2004.
    [45] S. Lin, D. Gunopulos, V. Kalogeraki, and S. Lonardi, “A Data Compression Technique for Sensor Networks with Dynamic Bandwidth Allocation,” Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME ’05), pp. 186-188, June 2005.
    [46] D. Ganesan, B. Greenstein, D. Estrin, J. Heidemann, R. Govindan, “Multi-resolution Storage and Search in Sensor Networks,” ACM Transactions on Storage (TOS), pp.277-315, 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE