研究生: |
傅本然 Ben-Ran Fu |
---|---|
論文名稱: |
微流道之幾何形狀對微型直接甲醇燃料電池中雙相流現象之影響探討--以H2SO4和NaHCO3化學反應模擬CO2生成 Effects of Channel Geometry on Two-Phase Flow Phenomena in micro-DMFC--with CO2 Bubbles Produced by Chemical Reactions of H2SO4 and NaHCO3 |
指導教授: |
潘欽
Chin Pan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 雙相流 、微流道 、直接甲醇燃料電池 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係利用硫酸(H2SO4)和碳酸氫鈉(NaHCO3)水溶液在微流道內混合後會產生化學反應,生成二氧化碳來模擬DMFC陽極端微流道中雙相流的傳輸現象,以期待解決二氧化碳氣泡阻塞流道之問題。研究中係利用微機電技術來製作出不同幾何形狀之微流道,分別有等截面積、漸縮和漸擴微流道,再利用不同濃度(0.2 mol/L、0.5 mol/L和0.8 mol/L)之硫酸和碳酸氫鈉水溶液,並通入不同之混合流體體積流率(3.20×10-9 m3/s≦Qmixture≦32.0×10-9 m3/s)來探討雙相流的現象。
研究結果顯示,當濃度越低且流率越大時,氣泡越不易生成;而當氣泡生成後,微流道內的雙相流動型態大致皆為氣泡流或彈狀流。在漸縮微流道內由於入口處的混合效果較差與微流道內加速度效應的雙重影響下,使得化學反應較不易發生;漸擴微流道中則因入口處有較佳的混合效果和微流道內減速度效應影響下,較有利於化學反應的發生,二氧化碳氣泡成長速率亦以漸擴微流道中為最大。
在不同實驗條件下可發現壓降皆有一高頻振盪,其頻率約為45 Hz,這可能是聲波振盪的表現;而在濃度為0.8 mol/L,3.20×10-9 m3/s≦Qmixture≦12.8×10-9 m3/s的等截面積微流道中,除了原有的高頻振盪外,亦發現低頻的振盪,振盪頻率約為0.02-0.04 Hz,並且伴隨著雙相流動型態的轉變(flow pattern transition instability)。
[1] 何玉麗,“燃料電池在能源供應體系中扮演的角色”,台灣經濟研究月刊,第24卷第11期,第13-21頁,2001。
[2] 白玉良,“迎接嶄新的氫利用社會—燃料電池之發展進程”,台灣經濟研究月刊,第24卷第9期,第83-96頁,2001。
[3] 左峻德,“知識經濟新典範—氫電科技產業發展之重要性”,台灣經濟研究月刊,第24卷第7期,第80-85頁,2001。
[4] 郭品璽,“新世代能源技術—燃料電池”,化工技術,第10卷第6期,第121頁,2002。
[5] 黃鎮江,“燃料電池”,全華科技圖書股份有限公司, 2003。
[6] 蔡克群,“燃料電池導論”,化工技術,第10卷第6期,第122-131頁,2002。
[7] 鄭耀宗、萬瑞霙,“各種燃料電池技術的進展分析”,臺電工程月刊,第601期,第80-90頁,1998。
[8] 賴耿陽,“燃料電池與電力貯存系統”,復漢出版社, 1998。
[9] 鄭耀宗、徐耀昇,“燃料電池技術進展的現況分析”,八十八年節約能源論文發表會論文專輯,第409-422頁,1999。
[10] 倪銘良,“燃料電池發展的新趨勢”,能源季刊,第32卷第2期,第102-114頁,2002。
[11] 張貴松、田中秀治、黃炳照,“日本小型/微型燃料電池的開發現況及展望”,化工技術,第11卷第4期,第260-270頁,2003。
[12] G. Cacciola, V. Antonucci, and S. Freni, “Technology up date and new strategies on fuel cells”, Journal of Power Sources, Vol. 100, pp. 67-79, 2001.
[13] 賴秋助、顏宇欣,“微小型直接甲醇燃料電池系統設計”,工業材料,第193期,第120-126頁,2003。
[14] 盧敏彥、黃俊傑、張美元,“微型燃料電池—直接甲醇燃料電池”,化工技術,第10卷第6期,第152-164頁,2002。
[15] H. Voss and J. Huff, “Portable fuel cell power generator”, Journal of Power Sources, Vol. 65, pp. 155-158, 1997.
[16] A. Heinzel, R. Nolte, K. Ledjeff-Hey, and M. Zedda, “Membrane fuel cells—concepts and system design”, Electrochimica Acta, Vol. 43, pp. 3817-3820, 1998.
[17] M. Baldauf and W. Preidel, “Status of the development of a direct methanol fuel cell”, Journal of Power Sources, Vol. 84, pp. 161-166, 1999.
[18] A. Heinzel, C. Hebling, M. Müller, M. Zedda, and C. Müller, “Fuel cells for low power applications”, Journal of Power Sources, Vol. 105, pp. 250-255, 2002.
[19] C.K. Dyer, “Fuel cells for portable applications”, Journal of Power Sources, Vol. 106, pp. 31-34, 2002.
[20] M. Hogarth, P. Christensen, A. Hamnett, and A. Shukla, “The design and construction of high-performance direct methanol fuel cells. 1. Liquid-feed systems”, Journal of Power Sources, Vol. 69, pp. 113-124, 1997.
[21] J.P. Meyers and H.L. Maynard, “Design considerations for miniaturized PEM fuel cells”, Journal of Power Sources, Vol. 109, pp. 76-88, 2002.
[22] A. Heinzel and V.M. Barragán, “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells”, Journal of Power Sources, Vol. 84, pp. 70-74, 1999.
[23] S.C. Thomas, X. Ren, S. Gottesfeld, and P. Zelenay, “Direct methanol fuel cells: progress in cell performance and cathode research”, Electrochimica Acta, Vol. 47, pp. 3741-3748, 2002.
[24] K. Sundmacher and K. Scott, “Direct methanol polymer electrolyte fuel cell: Analysis of charge and mass transfer in the vapor-liquid-solid system”, Chemical Engineering Science, Vol. 54, pp. 2927-2936, 1999.
[25] H.Y. Cha, H.G. Choi, J.D. Nam, Y. Lee, S.M. Cho, E.S. Lee, J.K. Lee, and C.H. Chung, “Fabrication of all-polymer micro-DMFCs using UV-sensitive photoresist”, Electrochimica Acta, Vol. 50, pp. 795-799, 2004.
[26] G.Q. Lu, C.Y. Wang, T.J. Yen, and X. Zhang, “Development and characterization of a silicon-based micro direct methanol fuel cell”, Electrochimica Acta, Vol. 49, pp. 821-828, 2004.
[27] K. Scott, W.M. Taama, P. Argyropoulos, and K. Sundmacher, “The impact of mass transport and methanol crossover on the direct methanol fuel cell”, Journal of Power Sources, Vol. 83, pp. 204-216, 1999.
[28] J. Liu, G. Sun, F. Zhao, G. Wang, G. Zhao, L. Chen, B. Yi, and Q. Xin, “Study of sintered stainless steel fiber felt as gas diffusion backing in air-breathing DMFC”, Journal of Power Sources, Vol. 133, pp. 175-180, 2004.
[29] S.C. Kelley, G.A. Deluga, and W.H. Smyrl, “Miniature fuel cells fabricated on silicon substrates”, AICHE Journal, Vol. 48, pp. 1071-1082, 2002.
[30] J. Yu, P. Cheng, Z. Ma, and B. Yi, “Fabrication of miniature silicon wafer fuel cells with improved performance”, Journal of Power Sources, Vol. 124, pp. 40-46, 2003.
[31] R. O’Hayre, S.J. Lee, S.W. Cha, and F.B. Prinz, “A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading”, Journal of Power Sources, Vol. 109, pp. 483-493, 2002.
[32] K. Shah, W.C. Shin, and R.S. Besser, “A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques”, Sensors and Actuators B, Vol. 97, pp. 157-167, 2004.
[33] W.Y. Sim, G.Y. Kim, and S.S. Yang, “Fabrication of micro power source (MPS) using a micro direct methanol fuel cell (μDMFC) for the medical applications”, in: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS’01), pp. 341–344, January 21-25, 2001, Interlaken, Switzerland.
[34] R. Hahn, S. Wagner, A. Schmitz, and H. Reichl, “Development of a planar micro fuel cell with thin film and micro patterning technologies”, Journal of Power Sources, Vol. 131, pp. 73-78, 2004.
[35] S.J. Lee, A. Chang-Chien, S.W. Cha, R. O’Hayre, Y.I. Park, Y. Saito, and F.B. Prinz, “Design and fabrication of a micro fuel cell array with ‘‘flip-flop’’ interconnection”, Journal of Power Sources, Vol. 112, pp. 410-418, 2002.
[36] S. Motokawa, M. Mohamedi, T. Momma, S. Shoji, and T. Osaka, “MEMS-based design and fabrication of a new concept micro direct methanol fuel cell (μ-DMFC)”, Electrochemistry Communications, Vol. 6, pp. 562-565, 2004.
[37] J. Yu, P. Cheng, Z. Ma, and B. Yi, “Fabrication of miniature twin-fuel-cell on silicon wafer”, Electrochimica Acta, Vol. 48, pp. 1537-1541, 2003.
[38] G. D’Arrigo, C. Spinella, G. Arena, and S. Lorenti, “Fabrication of miniaturized Si-based electrocatalytic membranes”, Materials Science and Engineering C, Vol. 23, pp. 13-18, 2003.
[39] T. Pichonat, B. Gauthier-Manuel, and D. Hauden, “A new proton-conducting porous silicon membrane for small fuel cells”, Chemical Engineering Journal, Vol. 101, pp. 107-111, 2004.
[40] H. Presting, J. Konle, V. Starkov, A. Vyatkin, and U. König, “Porous silicon for micro-sized fuel cell reformer units”, Materials Science and Engineering B, Vol. 108, pp. 162-165, 2004.
[41] A.V. Pattekar and M.V. Kothare, “A microreactor for hydrogen production in micro fuel cell applications”, Journal of Microelectromechanical Systems, Vol. 13, pp. 7-18, 2004.
[42] S. Tanaka, K.S. Chang, K.B. Min, D. Satoh, K. Yoshida, and M. Esashi, “MEMS-based components of a miniature fuel cell/fuel reformer system”, Chemical Engineering Journal, Vol. 101, pp. 143-149, 2004.
[43] J.S. Wainright, R.F. Savinell, C.C. Liu, and M. Litt, “Microfabrication fuel cells”, Electrochimica Acta, Vol. 48, pp. 2869-2877, 2003.
[44] A. Oedegaard, C. Hebling, A. Schmitz, S. Møller-Holst, and R. Tunold, “Influence of diffusion layer properties on low temperature DMFC”, Journal of Power Sources, Vol. 127, pp. 187-196, 2004.
[45] P. Argyropoulos, K. Scott, and W.M. Taama, “Carbon dioxide evolution patterns in direct methanol fuel cells”, Electrochimica Acta, Vol. 44, pp. 3575-3584, 1999.
[46] P. Argyropoulos, K. Scott, and W.M. Taama, “Gas evolution and power performance in direct methanol fuel cells”, Journal of Applied Electrochemistry, Vol. 29, pp. 661-669, 1999.
[47] K. Scott, W.M. Taama, and P. Argyropoulos, “Material aspects of the liquid feed direct methanol fuel cell”, Journal of Applied Electrochemistry, Vol. 28, pp. 1389-1397, 1998.
[48] K. Scott, P. Argyropoulos, P. Yiannopoulos, and W.M. Taama, “Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds”, Journal of Applied Electrochemistry, Vol. 31, pp. 823-832, 2001.
[49] K. Tüber, A. Oedegaard, M. Hermann, and C. Hebling, “Investigation of fractal flow-field in portable proton exchange membrane and direct methanol fuel cells”, Journal of Power Sources, Vol. 131, pp. 175-181, 2004.
[50] H. Yang, T.S. Zhao, and Q. Ye, “In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields”, Journal of Power Sources, Vol. 139, pp. 79-90, 2005.
[51] H. Yang, T.S. Zhao, and Q. Ye, “Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells”, Journal of Power Sources, Vol. 142, pp. 117-124, 2005.
[52] G.Q. Lu and C.Y. Wang, “Electrochemical and flow characterization of a direct methanol fuel cell”, Journal of Power Sources, Vol. 134, pp. 33-40, 2004.
[53] D.S. Meng, J. Kim, and C.J. Kim, “A distributed gas breather for micro direct methanol fuel cells (μ-DMFC)”, in: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS’03), pp. 534–537, January 19-23, 2003, Kyoto, Japan.
[54] T. Bewer, T. Beckmann, H. Dohle, J. Mergel, and D. Stolten, “Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution” , Journal of Power Sources, Vol. 125, pp. 1-9, 2004.
[55] H. Yang, T.S. Zhao, and Q. Ye, “Addition of non-reaction gases to the anode flow field of DMFCs leading to improved performance”, Electrochemistry Communications, Vol. 6, pp. 1098-1103, 2004.
[56] J.J. Hwang, F.G. Tseng, and C. Pan, “Ethanol-CO2 two-phase flow in diverging and converging microchannels”, International Journal of Multiphase Flow, Vol. 31, pp. 548-570, 2005.
[57] M. Kawaji and P.M.-Y. Chung, “Unique characteristics of adiabatic gas-liquid flows in microchannels: diameter and shape effects on flow patterns, void fraction and pressure drop”, in: Proceedings of the First International Conference on Microchannels and Minichannels, pp. 115–227, April 21-23, 2003, Rochester, New York, USA.
[58] M.K. Akbar, D.A. Plummer, and S.M. Ghiaasiaan, “On gas-liquid two-phase flow regimes in microchannels”, International Journal of Multiphase Flow, Vol. 29, pp. 855-865, 2003.
[59] P.M.-Y. Chung and M. Kawaji, “The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels”, International Journal of Multiphase Flow, Vol. 30, pp. 735-761, 2004.
[60] A. Kawahara, P.M.-Y. Chung, and M. Kawaji, “Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel”, International Journal of Multiphase flow, Vol. 28, pp. 1411-1435, 2002.
[61] A. Kawahara, M. Sadatomi, K. Okayama, and M. Kawaji, “Effects of liquid properties on pressure drop of two-phase gas-liquid flows through a microchannel”, in: Proceedings of the First International Conference on Microchannels and Minichannels, pp. 479–486, April 21-23, 2003, Rochester, New York, USA.
[62] T.S. Zhao and Q.C. Bi, “Co-current air-water two-phase flow patterns in vertical triangular microchannels”, International Journal of Multiphase Flow, Vol. 27, pp. 765-782, 2001.
[63] A.M. Barajas and R.L. Panton, “The effects of contact angle on two-phase flow in capillary tubes”, International Journal of Multiphase Flow, Vol. 19, pp. 337-346, 1993.
[64] A. Serizawa, Z. Feng, and Z. Kawara, “Two-phase flow in microchannels”, Experimental Thermal and Fluid Science, Vol. 26, pp. 703-714, 2002.
[65] P.C. Lee, F.G. Tseng, and C. Pan, “Bubble dynamics in microchannels, Part (I) single microchannel”, International Journal of Heat and Mass Transfer, Vol. 47, pp. 5575-5589, 2004.
[66] H.Y. Li, F.G. Tseng, and C. Pan, “Bubble dynamics in microchannels, Part (II) two parallel microchannels”, International Journal of Heat and Mass Transfer, Vol. 47, pp. 5591-5601, 2004.
[67] J. Kendall and K.P. Monroe, “The viscosity of liquids. Ⅱ. The viscosity-composition curve for ideal liquid mixtures”, Journal of the American Chemical Society, Vol. 39, pp. 1787-1802, 1917.
[68] D.R. Lide et al., CRC Handbook of Chemistry and Physics, 83rd edition, CRC Press, 2002.
[69] F.M. White, Fluid Mechanics, p. 356, McGraw-Hill Book Co., New York, 1979.
[70] J.P. Hartnett and M. Kostic, “Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts”, Advances in Heat Transfer, Vol. 19, pp. 247-356, 1989.
[71] K.S. Yang, I.Y. Chen, B.Y. Shew, and C.C. Wang, “A study of the fabrication and analysis of micro diffuser/nozzles”, in: Proceedings of the First International Conference on Microchannels and Minichannels, pp. 781–786, April 21-23, 2003, Rochester, New York, USA.
[72] J.A. Boure, A.E. Bergles, and L.S. Tong, “Review of two-phase flow instability”, Nuclear Engineering and Design, Vol. 25, pp. 165-192, 1973.
[73] R.T. Lahey Jr. and M.Z. Podowski, “On the analysis of various instabilities in two-phase flows”, Multiphase Science and Technology, Hewitt, Ed. G.F., Delhaye, J. M. and Zuber, N., vol.4, Ch.3, Hemisphere Publishing Co,, New York, 1989.