簡易檢索 / 詳目顯示

研究生: 黃川桐
論文名稱: Stress Relaxation of V-shaped Notch on Single Crystal Silicon using Nanoholes
運用奈米洞分散單晶矽V型裂紋之應力集中
指導教授: 葉哲良
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 102
中文關鍵詞: 應力集中奈米洞增韌法無電極金屬蝕刻V型裂紋
外文關鍵詞: stress concentration, nanohole toughening, electroless metal deposition, V-notch
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis investigates a surface nanohole toughening method which relieves stress concentration around the V-shaped notch. Using electroless metal deposition, this work fabricates the above mentioned structure, and matains the single crystal silicon properties.
    The anisotropic etchant TMAH etches along the specific crystal direction and forms a V-shaped notch with a groove degree of 70.53°. This notch dominates the whole fracture behavior; only the crack propagates along this notch. The rupture load of bare Si is about 30.9 N. Depth of the V-shaped notch after forming is 2 μm, and the rupture load is 18.1 N; when depth reaches 14 μm, the rupture load decreases to 6.3 N.
    Nanoholes form on the pre-notch plate, designing three different depth nanoholes : half of notch depth; equal to notch depth; one half of notch depth. According to a three point bending test, when nanohole depth is half of notch, it recovers and toughens the plate. The strength of 2 μm and 14 μm plate both enhance by nanoholes to 2.62 times and 5.57 times individually.


    中文摘要 I Abstract II 誌謝 III Contents IV List of Figures VII List of Tables X List of Symbols X 1. Introduction 1 1.1 Background 1 1.2 General Materials Classification 3 1.3 Stress-Strain Curve Diagram 4 1.4 Strengthening and Toughness 8 1.5 Prenotch 9 1.6 Strengthening Mechanisms 10 1.6.1 Bulk 12 1.6.2 Surface 31 1.7 Summary 34 1.8 Motivation 36 2. Fabrication 37 2.1 Dicing 38 2.2 Reduction of Mechanical Damage 39 2.3 V-shaped Notch 41 2.4 Protective Coating 44 2.5 Electroless metal deposition 46 3. Measurement 49 3.1 Material Testing Machine 50 3.2 Scanning Electron Microscope 52 3.3 Raman Spectroscopy 53 4. Results and Discussions 61 4.1 Morphologies of Plates 62 4.2 Prenotch Specimen 66 4.3 Nanohole Specimen 70 4.4 Raman Spectrascopy 77 5. Conclusion 88 6. Future Works 89 Appendix A. 92 Appendix B. 93 Appendix C. 94 References 95

    [1] C. Wilson, A. Ormeggi, and M. Narbutovskih, "Fracture testing of silicon microcantilever beams," Journal of Applied Physics, vol. 79, p. 2386, 1996.
    [2] D. Kim, J. Ahn, W. Choi, H. Kim, T. Kim, J. Song, Y. Huang, Z. Liu, C. Lu, and J. Rogers, "Stretchable and foldable silicon integrated circuits," Science, vol. 320, p. 507, 2008.
    [3] P. Ferreira and J. Rogers, "Printable Single-Crystal Silicon Micro/Nanoscale Ribbons, Platelets and Bars Generated from Bulk Wafers*," Adv. Funct. Mater, vol. 17, pp. 3051-3062, 2007.
    [4] D. Khang, H. Jiang, Y. Huang, and J. Rogers, "A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates." vol. 311: American Association for the Advancement of Science, 2006, pp. 208-212.
    [5] J. Lee, N. Lakshminarayan, S. Dhungel, K. Kim, and J. Yi, "Optimization of fabrication process of high-efficiency and low-cost crystalline silicon solar cell for industrial applications," Solar Energy Materials and Solar Cells, vol. 93, pp. 256-261, 2009.
    [6] C. Sun, W. Min, N. Linn, P. Jiang, and B. Jiang, "Templated fabrication of large area subwavelength antireflection gratings on silicon," Applied Physics Letters, vol. 91, p. 231105, 2007.
    [7] H. Chen, W. Fan, C. Cheng, C. Lin, and K. Huang, "Fabrication of texturing antireflection structures in solar cells by using the defocusing exposure in optical lithography," Journal of the Electrochemical Society, vol. 153, p. G802, 2006.
    [8] Z. Xi, D. Yang, W. Dan, C. Jun, X. Li, and D. Que, "Texturization of cast multicrystalline silicon for solar cells," Semiconductor science and technology, vol. 19, pp. 485-489, 2004.
    [9] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik, and J. Nijs, "Improved anisotropic etching process for industrial texturing of silicon solar cells," SOL ENERG MATER SOL CELLS, vol. 57, pp. 179-188, 1999.
    [10] W. Guter, J. Schone, S. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. Bett, and F. Dimroth, "Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight," Applied Physics Letters, vol. 94, p. 223504, 2009.
    [11] K. Munzer, K. Holdermann, R. Schlosser, and S. Sterk, "Thin monocrystalline silicon solar cells," IEEE Transactions on Electron Devices, vol. 46, pp. 2055-2061, 1999.
    [12] V. Lehmann, Electrochemistry of silicon: Wiley-VCH Weinheim, 2002.
    [13] G. Kovacs, N. Maluf, and K. Petersen, "Bulk micromachining of silicon," Proceedings of the IEEE, vol. 86, pp. 1536-1551, 1998.
    [14] K. Williams and R. Muller, "Etch rates for micromachining processing," Journal of Microelectromechanical Systems, vol. 5, pp. 256-269, 1996.
    [15] K. Williams, K. Gupta, and M. Wasilik, "Etch rates for micromachining processing-Part II," Microelectromechanical Systems, Journal of, vol. 12, pp. 761-778, 2003.
    [16] D. Burns and V. Bright, "Optical power induced damage to microelectromechanical mirrors," Sensors & Actuators: A. Physical, vol. 70, pp. 6-14, 1998.
    [17] L. Senesac, J. Corbeil, S. Rajic, N. Lavrik, and P. Datskos, "IR imaging using uncooled microcantilever detectors," Ultramicroscopy, vol. 97, pp. 451-458, 2003.
    [18] R. Raiteri, M. Grattarola, H. Butt, and P. Skladal, "Micromechanical cantilever-based biosensors," Sensors & Actuators: B. Chemical, vol. 79, pp. 115-126, 2001.
    [19] D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. Britton, S. Patel, T. Mlsna, D. McCorkle, and B. Warmack, "Design and performance of a microcantilever-based hydrogen sensor," Sensors & Actuators: B. Chemical, vol. 88, pp. 120-131, 2003.
    [20] T. Yi, L. Li, and C. Kim, "Microscale material testing of single crystalline silicon: process effects on surface morphology and tensile strength," Sensors & Actuators: A. Physical, vol. 83, pp. 172-178, 2000.
    [21] I. Chasiotis and W. Knauss, "The mechanical strength of polysilicon films: Part 1. The influence of fabrication governed surface conditions," Journal of the Mechanics and Physics of Solids, vol. 51, pp. 1533-1550, 2003.
    [22] I. Chasiotis and W. Knauss, "The mechanical strength of polysilicon films: Part 2. Size effects associated with elliptical and circular perforations," Journal of the Mechanics and Physics of Solids, vol. 51, pp. 1551-1572, 2003.
    [23] K. Chen, A. Ayon, and S. Spearing, "Controlling and testing the fracture strength of silicon on the mesoscale," Journal of the American Ceramic Society, vol. 83, pp. 1476-1484, 2000.
    [24] N. McLellan, N. Fan, S. Liu, K. Lau, and J. Wu, "Effects of Wafer Thinning Condition on the Roughness, Morphology and Fracture Strength of Silicon Die," Journal of Electronic Packaging, vol. 126, p. 110, 2004.
    [25] H. Jiun, I. Ahmad, A. Jalar, and G. Omar, "Effect of wafer thinning methods towards fracture strength and topography of silicon die," Microelectronics Reliability, vol. 46, pp. 836-845, 2006.
    [26] J. Xu, J. Luo, L. Wang, and X. Lu, "The crystallographic change in sub-surface layer of the silicon single crystal polished by chemical mechanical polishing," Tribology International, vol. 40, pp. 285-289, 2007.
    [27] Y. Tian, L. Zhou, J. Shimizu, Y. Tashiro, and R. Kang, "Elimination of surface scratch/texture on the surface of single crystal Si substrate in chemo-mechanical grinding (CMG) process," Applied Surface Science, 2008.
    [28] J. Li, H. Hwang, E. Ahn, Q. Chen, P. Kim, T. Lee, M. Chung, and T. Chung, "Laser Dicing and Subsequent Die Strength Enhancement Technologies for Ultra-thin Wafer," 2007, pp. 761-766.
    [29] S. Schoenfelder, M. Ebert, C. Landesberger, K. Bock, and J. Bagdahn, "Investigations of the influence of dicing techniques on the strength properties of thin silicon," Microelectronics Reliability, vol. 47, pp. 168-178, 2007.
    [30] H. Theuss, A. Koller, W. Kroninger, S. Schoenfelder, and M. Petzold, "Assessment of a lasersingulation process for Si-wafers with metallized back side and small die size," 2008, pp. 1525-1531.
    [31] P. Vukusic and J. Sambles, "Photonic structures in biology," Nature, vol. 424, pp. 852-855, 2003.
    [32] X. Feng and L. Jiang, "Design and creation of superwetting/antiwetting surfaces," Advanced Materials, vol. 18, 2006.
    [33] H. Tomaszewski, H. W?glarz, A. Wajler, M. Boniecki, and D. Kalinski, "Multilayer ceramic composites with high failure resistance," Journal of the European Ceramic Society, vol. 27, pp. 1373-1377, 2007.
    [34] D. Kovar, M. Thouless, and J. Halloran, "Crack deflection and propagation in layered silicon nitride/boron nitride ceramics," Journal of the American Ceramic Society, vol. 81, pp. 1004-1112, 1998.
    [35] M. Qingsong, "Chen 2haohui, Zheng Wenwei, Hu Haffeng. Processing and characterization of three-dimensional carbon fiber reinforced Si-OC composites via precursor pyrolysis," Materials Science and Engineering (part A), vol. 352, pp. 1-2, 2003.
    [36] Z. Xia, L. Riester, B. Sheldon, W. Curtin, J. Liang, A. Yin, and J. Xu, "Mechanical properties of highly ordered nanoporous anodic alumina membranes," Rev. Adv. Mater. Sci, vol. 6, pp. 131-139, 2004.
    [37] R. Nalla, J. Kruzic, and R. Ritchie, "On the origin of the toughness of mineralized tissue: microcracking or crack bridging?," Bone, vol. 34, pp. 790-798, 2004.
    [38] D. Vashishth, J. Behiri, and W. Bonfield, "Crack growth resistance in cortical bone: concept of microcrack toughening," Journal of biomechanics, vol. 30, pp. 763-769, 1997.
    [39] A. Popa, G. Anne, J. Vleugels, A. Foissy, and O. Van Der Biest, "Suspension Development for Colloidal Shaping of Al 2 O 3-ZrO 2 FGM's," 2005, pp. 777-782.
    [40] J. Plummer, M. Deal, and P. Griffin, "Silicon VLSI technology," 2008.
    [41] D. Rats, V. Hajek, and L. Martinu, "Micro-scratch analysis and mechanical properties of plasma-deposited silicon-based coatings on polymer substrates," Thin Solid Films, vol. 340, pp. 33-39, 1999.
    [42] J. Thurn and R. Cook, "Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films," Journal of Applied Physics, vol. 91, p. 1988, 2002.
    [43] I. Vrinceanu and S. Danyluk, "Measurement of residual stress in single crystal silicon wafers," 2002, pp. 297-301.
    [44] J. Rosler, H. Harders, M. Baeker, and SpringerLink, Mechanical Behaviour of Engineering Materials Metals, Ceramics, Polymers, and Composites: Springer, 2007.
    [45] K. Jurkschat, S. Senkader, P. Wilshaw, D. Gambaro, and R. Falster, "Onset of slip in silicon containing oxide precipitates," Journal of Applied Physics, vol. 90, p. 3219, 2001.
    [46] I. Yonenaga and K. Sumino, "Influence of oxygen precipitation along dislocations on the strength of silicon crystals," Journal of Applied Physics, vol. 80, p. 734, 1996.
    [47] M. Akatsuka and K. Sueoka, "Pinning effect of punched-out dislocations in carbon-, nitrogen-or boron-doped silicon wafers," Jpn. J. Appl. Phys, vol. 40, pp. 1240-1241, 2001.
    [48] C. Alpass, J. Murphy, R. Falster, and P. Wilshaw, "Nitrogen diffusion and interaction with dislocations in single-crystal silicon," Journal of Applied Physics, vol. 105, p. 013519, 2009.
    [49] I. Yonenaga, "Nitrogen effects on generation and velocity of dislocations in Czochralski-grown silicon," Journal of Applied Physics, vol. 98, p. 023517, 2005.
    [50] G. Wang, D. Yang, D. Li, Q. Shui, J. Yang, and D. Que, "Mechanical strength of nitrogen-doped silicon single crystal investigated by three-point bending method," Physica B: Physics of Condensed Matter, vol. 308, pp. 450-453, 2001.
    [51] G. Yu, J. Watanabe, K. Izumi, K. Nakashima, T. Jimbo, and M. Umeno, "Mechanical Property Characterization of Boron-Doped Silicon by Berkovich-Type Indenter," JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS, vol. 40, pp. 183-185, 2001.
    [52] J. Chen, D. Yang, X. Ma, Z. Zeng, D. Tian, L. Li, D. Que, and L. Gong, "Influence of germanium doping on the mechanical strength of Czochralski silicon wafers," Journal of Applied Physics, vol. 103, p. 123521, 2008.
    [53] X. Huang, T. Sato, M. Nakanishi, T. Taishi, and K. Hoshikawa, "High strength Si wafers with heavy B and Ge codoping'," Jpn. J. Appl. Phys, vol. 42, 2003.
    [54] R. Sun, T. Xu, and Q. Xue, "Effect of Ar+ ion implantation on the nano-mechanical properties and microstructure of single crystal silicon," Applied Surface Science, vol. 249, pp. 386-392, 2005.
    [55] R. Sun, T. Xu, and Q. Xue, "Surface modification of single crystal silicon by Ar+ ion implantation and vacuum deposition of amorphous carbon coating," Surface & Coatings Technology, vol. 200, pp. 5794-5799, 2006.
    [56] R. Sun, T. Xu, J. Zhang, and Q. Xue, "The study of ion mixed amorphous carbon films on single crystal silicon by C ion implantation," Applied Surface Science, vol. 252, pp. 4236-4243, 2006.
    [57] W. Moon, T. Ito, S. Uchimura, and H. Saka, "Toughening of ceramics by dislocation sub-boundaries," Materials Science & Engineering A, vol. 387, pp. 837-839, 2004.
    [58] P. Chen, H. Peng, C. Hsieh, and M. Chyu, "The characteristic behavior of TMAH water solution for anisotropic etching on both Silicon substrate and SiO2 layer," Sensors & Actuators: A. Physical, vol. 93, pp. 132-137, 2001.
    [59] K. Biswas and S. Kal, "Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon," Microelectronics Journal, vol. 37, pp. 519-525, 2006.
    [60] M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, "Differences in anisotropic etching properties of KOH and TMAH solutions," Sensors & Actuators: A. Physical, vol. 80, pp. 179-188, 2000.
    [61] K. Sundaram, A. Vijayakumar, and G. Subramanian, "Smooth etching of silicon using TMAH and isopropyl alcohol for MEMS applications," Microelectronic Engineering, vol. 77, pp. 230-241, 2005.
    [62] I. De Wolf, "Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits," Semiconductor science and technology, vol. 11, pp. 139-154, 1996.
    [63] J. Lemaitre and J. Chaboche, Mechanics of solid materials: Cambridge Univ Pr, 1994.
    [64] E. Anastassakis and E. Burstein, "Electric-Field-Induced Infrared Absorption and Raman Scattering in Diamond," Physical Review B, vol. 2, pp. 1952-1965, 1970.
    [65] S. Ganesan, A. Maradudin, and J. Oitmaa, "A lattice theory of morphic effects in crystals of the diamond structure," Ann Phys, vol. 56, pp. 556-594, 1970.
    [66] E. Anastassakis, A. Cantarero, and M. Cardona, "Piezo-Raman measurements and anharmonic parameters in silicon and diamond," Physical Review B, vol. 41, pp. 7529-7535, 1990.
    [67] S. Chu, "Elastic bending of semiconductor wafer revisited and comments on Stoney's equation," Journal of the Electrochemical Society, vol. 145, p. 3621, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE