研究生: |
徐文合 Wen-Ho Hsu |
---|---|
論文名稱: |
奈米碳管-二氧化鈦複合式觸媒光催化還原二氧化碳 Photo-catalytic Reduction of CO2 by CNT-TiO2 Composite Catalyst |
指導教授: |
凌永健
Yong-Chien Ling |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 二氧化鈦 、奈米碳管 、光催化還原 、二氧化碳 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶膠凝膠法製備奈米碳管-二氧化鈦複合式觸媒。經X射線粉末繞射儀(PXRD)、傅立葉轉換紅外線光譜儀(FTIR)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)鑑定觸媒晶體結構和型態。由分析結果可知,在奈米碳管-二氧化鈦複合式觸媒中,二氧化鈦粒子吸附在碳管表面,且呈現銳鈦礦晶相,粒徑分布約在5-10 nm。
實驗中觸媒的活性,將以光催化還原二氧化碳做測試。從二氧化碳的光催化分析中,發現產物為甲醇。經由定量光催化所得的甲醇產率,奈米碳管-二氧化鈦複合式觸媒具有比溶膠凝膠法合成的二氧化鈦和商業化Degussa P25更高的光催化效率。在我們的光催化系統中,0.01 g奈米碳管-二氧化鈦複合式觸媒分散在25毫升0.2N氫氧化鈉溶液,經光照20小時,可得到最大甲醇產率為423.96 □mol/g。
In our study, CNT-TiO2 composite catalyst was synthesized by sol-gel method. Powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis were carried out to characterize composite catalysts. From the results, anatase TiO2 particles were adsorbed on CNT in CNT-TiO2 composite catalyst and size distribution is about 5-10 nm.
The photo-catalytic activities of the composite catalysts were evaluated by the photo-catalytic reduction of CO2. The results indicated the photo-reduction of CO2 into methanol in the photo-catalysis process, then CNT-TiO2 composite catalyst possessed higher photo-activity than Degussa P25 TiO2 and TiO2 prepared by sol-gel method. The maximum yield was reached the composition of 0.01 g CNT-TiO2 composite catalyst and 25 mL 0.2 N sodium hydroxide under the continuous irradiation of 20 hours. The preliminary results of photo-catalysis reaction in this work showed the methanol maximum yield of 423.96 mmol/g
1. Slamet; Nasution, H. W.; Purnama, E.; Kosela, S.; Gunlazuardi, J. Catalysis Communications 2005, 6, 313-319.
2. Tseng, I. H.; Chang, W. C.; Wu, J. C. S. Applied Catalysis B-Environmental 2002, 37, 37-48.
3. Ding, H. M.; Sun, H.; Shan, Y. K. Journal of Photochemistry and Photobiology a-Chemistry 2005, 169, 101-107.
4. Abe, R.; Sayama, K.; Arakawa, H. Chemical Physics Letters 2002, 362, 441-444.
5. Vinodgopal, K.; Kamat, P. V. Environmental Science & Technology 1995, 29, 841-845.
6. Gopidas, K. R.; Bohorquez, M.; Kamat, P. V. Journal of Physical Chemistry 1990, 94, 6435-6440.
7. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269-271.
8. Yu, Y.; Yu, J. C.; Yu, J. G.; Kwok, Y. C.; Che, Y. K.; Zhao, J. C.; Ding, L.; Ge, W. K.; Wong, P. K. Applied Catalysis a-General 2005, 289, 186-196.
9. Yu, Y.; Yu, J. C.; Chan, C. Y.; Che, Y. K.; Zhao, J. C.; Ding, L.; Ge, W. K.; Wong, P. K. Applied Catalysis B-Environmental 2005, 61, 1-11.
10. Gratzel, M. Nature 2001, 414, 338-344.
11. Wu, C. G.; Chao, C. C.; Kuo, F. T. Catalysis Today 2004, 97, 103-112.
12. Iwasaki, M.; Hara, M.; Kawada, H.; Tada, H.; Ito, S. Journal of Colloid and Interface Science 2000, 224, 202-204.
13. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chemical Reviews 1995, 95, 735-758.
14. Yoneyama, H. Catalysis Today 1997, 39, 169-175.
15. Subrahmanyam, M.; Kaneco, S.; Alonso-Vante, N. Applied Catalysis B-Environmental 1999, 23, 169-174.
16. Liu, B. J.; Torimoto, T.; Matsumoto, H.; Yoneyama, H. Journal of Photochemistry and Photobiology a-Chemistry 1997, 108, 187-192.
17. Yahaya, A. H.; Gondal, M. A.; Hameed, A. Chemical Physics Letters 2004, 400, 206-212.
18. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. Journal of Electroanalytical Chemistry 1995, 396, 21-26.
19. Sasirekha, N.; Basha, S. J. S.; Shanthi, K. Applied Catalysis B-Environmental 2006, 62, 169-180.
20. Mizuno, T.; Adachi, K.; Ohta, K.; Saji, A. Journal of Photochemistry and Photobiology a-Chemistry 1996, 98, 87-90.
21. Guan, G. Q.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A. Applied Catalysis a-General 2003, 249, 11-18.
22. Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. Applied Catalysis B-Environmental 2005, 56, 305-312.
23. Park, M. J.; Lee, J. K.; Lee, B. S.; Lee, Y. W.; Choi, I. S.; Lee, S. G. Chemistry of Materials 2006, 18, 1546-1551.
24. Liu, L. Q.; Qin, Y. J.; Guo, Z. X.; Zhu, D. B. Carbon 2003, 41, 331-335.
25. Khaled, S. M.; Sui, R.; Charpentier, P. A.; Rizkalla, A. S. Langmuir 2007, 23, 3988-3995.
26. Maensiri, S.; Laokul, P.; Klinkaewnarong, J. Journal of Magnetism and Magnetic Materials 2006, 302, 448-453.
27. Hemraj-Benny, T.; Banerjee, S.; Wong, S. S. Chemistry of Materials 2004, 16, 1855-1863.
28. Zhang, Y.; Franklin, N. W.; Chen, R. J.; Dai, H. J. Chemical Physics Letters 2000, 331, 35-41.
29. Xia, X. H.; Jia, Z. H.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L. L. Carbon 2007, 45, 717-721.
30. Sayama, K.; Arakawa, H. Chemistry Letters 1992, 253-256.
31. Niessen, R. A. H.; de Jonge, J.; Notten, P. Journal of the Electrochemical Society 2006, 153, A1484-a1491.
32. Kibria, A. K. M. F.; Mo, Y. H.; Park, K. S.; Nahm, K. S.; Yun, M. H. International Journal of Hydrogen Energy 2001, 26, 823-829.