簡易檢索 / 詳目顯示

研究生: 朱建銘
論文名稱: A Novel Pilot Pattern Design Criterion for Compressed Sensing-based Sparse Channel Estimation in OFDM Systems
正交分頻多工系統中基於壓縮感知通道估測之領航信號樣式設計準則研究
指導教授: 蔡育仁
口試委員: 蔡育仁
洪樂文
吳仁銘
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 55
中文關鍵詞: 壓縮感測通道估測
外文關鍵詞: Compressed sensing, Channel estimation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓縮感知是一項被應用在許多領域的訊號處理技術。透過壓縮感知,可以由較少量的資訊高機率地復原未知數,藉此達成資源的節省。在無線通訊領域上,由於多重路徑通道的稀疏特性,我們可以藉由以壓縮感知為基礎的方法來處理在正交分頻多工中的稀疏通道估測問題。其中在領航信號的樣式的設計上,有別於一般藉由最小化測量矩陣的最大相關性值的方法,本文提出了新的設計準則,藉此有較高的機率能挑選出正交性較高的測量矩陣。模擬結果顯示,相對於被廣泛採用的準則,由本文提出的設計準則所產生的領航信號,在稀疏通道估測上可以有更低以及更穩定的均方誤差表現。


    Compressed sensing (CS) is a signal processing technique which has been applied in lots of fields. Through CS, unknown parameters can be recovered with high probability from smaller amounts of information so that resources are saved. Due to the sparse nature of multipath channels, we settle the channel estimation problem in orthogonal frequency division multiplexing (OFDM) systems using CS -based method. On the design of pilot patterns, instead of a general way of minimizing the mutual coherence of the measurement matrix, a novel criterion is proposed by which measurement matrices with higher orthogonality can be picked with higher probability. Simulation results display that, in comparison to the widely used criterion, the pilot patterns generated by proposed criterion give better and more stable mean square error (MSE) performances in sparse channel estimation.

    口試委員會審定書 # 誌謝 2 中文摘要 i ABSTRACT ii CONTENTS iii LIST OF FIGURES v LIST OF TABLES vii Chapter 1 Introduction 1 1.1 Background 1 1.2 Related Works 4 Chapter 2 Problem Statement 6 2.1 An Overview of Compressed Sensing 6 2.2 OFDM System Model 10 2.3 Sparse Channel Estimation via Compressed Sensing 13 Chapter 3 Proposed Method 15 3.1 Effects from Eigenvalues of Measurement Matrices 15 3.2 Derivation for Bounds of Reconstruction Errors 17 3.3 Proposed Design Criterion 24 Chapter 4 Simulation Results 27 4.1 MSE Results 28 4.2 Results of Support Errors 33 4.3 Stability Results 37 4.4 Different Estimations of Sparsity 41 4.5 Another Channel Case 44 Chapter 5 Discussions 49 5.1 Distribution of Pilot Positions 49 5.2 Other Pilot Search Schemes 51 Chapter 6 Conclusion 52 References 53

    [1] Y. Shen and E. F. Martinez. “Channel Estimation in OFDM Systems,” AN3059, Freescale Semiconductor, Inc., Jan. 2006.
    [2] I. J. Fevrier, S. B. Gelfand, and M. P. Fitz, “Reduced complexity decision feedback equalization for multipath channels with large delay spreads,” IEEE Trans. Commun., vol. 47, no. 6, pp. 927–937, Jun. 1999.
    [3] M. Kocic, D. Brady, and M. Stojanovic, “Sparse Equalization for Real-Time Digital Underwater Acoustic Communications,” in Proc. OCEANS Conf., pp. 1417–1422, Oct. 1995. .
    [4] X. He and R. Song, “Pilot pattern optimization for compressed sensing based sparse channel estimation in OFDM systems,” in Proc. IEEE Int. Conf. Wireless Commun. Signal Process., pp. 1–5, Oct. 2010.
    [5] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, pp. 210–227, Feb. 2009.
    [6] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 72–82, Mar. 2008.
    [7] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcomplete representations in the presence of noise,” IEEE Trans. Inf. Theory, vol. 52, no. 1, pp. 6–18, Jan. 2006.
    [8] L. Najjar, “Pilot allocation by Genetic Algorithms for sparse channel estimation in OFDM systems,” in Proc. of European Signal Process. Conf. (EUSIPCO), pp. 1–5, Sep. 2013.
    [9] X. He, R. Song, and W. Zhu, “Pilot allocation for sparse channel estimation in MIMO-OFDM systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 9, pp. 612-616, Sep. 2013.
    [10] C. Qi, G. Yue, L. Wu, and A. Nallanathan, “Pilot Design for Sparse Channel Estimation in OFDM-Based Cognitive Radio Systems,” IEEE Trans. Veh. Technol., vol. 63, no. 2, pp. 982–987, Feb. 2014.
    [11] X. He, R. Song, and W. P. Zhu, “Optimal pilot pattern design for compressed sensing-based sparse channel estimation in OFDM systems,” Circuits Syst. Signal Process., vol. 31, pp. 1379–1395, 2012.
    [12] M. Babaie-Zadeh and C. Jutten, “On the stable recovery of the sparsest overcomplete representations in presence of noise,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5396–5400, Oct. 2010.
    [13] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math., vol. 59, no. 8, pp. 1207–1223, Aug. 2006.
    [14] J. Tropp and A. C. Gilbert, “Signal recovery from partial information via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no.12, pp. 4655–4666, Dec. 2007.
    [15] T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal recovery with noise,” IEEE Trans. Inform. Theory, vol. 57, no. 7, pp. 4680–4688, 2011.
    [16] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition”, IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2845–62, Nov. 2001.
    [17] C. Qi and L. Wu, “A hybrid compressed sensing algorithm for sparse channel estimation in MIMO OFDM systems,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process, pp. 3488–3491, May 2011.
    [18] H. Wolkowicz and G. P. H. Styan, “Bounds for eigenvalues using traces,” Linear Algebra Its Appl., vol. 29, pp. 471–506, 1980.
    [19] R. Jain, “Channel Models: A Tutorial, ” WiMAX Forum AATG, Feb. 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE